
Lecture 10. Neural Networks for text
Turning text into numbers
Joaquin Vanschoren

Overview

Word embeddings

Word2Vec, FastText, GloVe

Neural networks on word embeddings

Sequence-to-sequence models

Self-attention

Transformer models

Bag of word representation

First, build a vocabulary of all occuring words. Maps every word to an index.

Represent each document as an dimensional vector (top- most frequent words)

One-hot (sparse) encoding: 1 if the word occurs in the document

Destroys the order of the words in the text (hence, a 'bag' of words)

N N

Example: IMBD review database
50,000 reviews, labeled positive (1) or negative (0)

Every row (document) is one review, no other input features

Already tokenized. All markup, punctuation,... removed

Text contains 88584 unique words

Review 0: the this film was just brilliant casting location scenery story direction everyone's
really suited the part they played and you could just imagine being there robert redford's is a
n amazing actor and now the same being director norman's father came from the same scottish isl
and as myself so i loved

Review 5: the begins better than it ends funny that the russian submarine crew outperforms all
other actors it's like those scenes where documentary shots br br spoiler part the message dech
ifered was contrary to the whole story it just does not mesh br br

Review 10: the french horror cinema has seen something of a revival over the last couple of yea
rs with great films such as inside and switchblade romance bursting on to the scene maléfique p
receded the revival just slightly but stands head and shoulders over most modern horror titles
and is surely one

Review 3: the the scots excel at storytelling the traditional sort many years after the event i
can still see in my mind's eye an elderly lady my friend's mother retelling the battle of cullo
den she makes the characters come alive her passion is that of an eye witness one to the events
on the sodden heath a mile or so from where she lives br br of course it happened many years be
fore she was born but you wouldn't guess from

Encoded review: [1, 1, 18606, 16082, 30, 2801, 1, 2037, 429, 108, 150, 100, 1, 1491, 10, 67, 1
28, 64, 8, 58, 15302, 741, 32, 3712, 758, 58, 5763, 449, 9211, 1, 982, 4, 64314, 56, 163, 1, 10
2, 213, 1236, 38, 1794, 6, 12, 4, 32, 741, 2410, 28, 5, 1, 684, 20, 1, 33926, 7336, 3, 3690, 3
9, 35, 36, 118, 56, 453, 7, 7, 4, 262, 9, 572, 108, 150, 156, 56, 13, 1444, 18, 22, 583, 479, 3
6]

One-hot-encoded review: [0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1. 1. 1. 0. 1.

1.
 1. 0. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1. 1. 1. 1. 1.
 1. 0. 1. 1. 0. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 1. 0. 0. 1. 1. 0. 0. 0.
 1. 0. 0. 0. 0. 1. 0. 1.]

Word counts

Count the number of times each word appears in the document

Example using sklearn CountVectorizer (on 2 documents)

In practice, we also:

Preprocess the text (tokenization, stemming, remove stopwords, ...)

Use n-grams ("not terrible", "terrible acting",...), character n-grams ('ter', 'err', 'eri',...)

Scale the word-counts (e.g. L2 normalization or TF-IDF)

Vocabulary (feature names) after fit: ['actor' 'amazing' 'an' 'and' 'are' 'as' 'bad' 'be' 'bein
g' 'best' 'big'
 'boobs' 'brilliant' 'but' 'came' 'casting' 'cheesy' 'could' 'describe'
 'direction' 'director' 'ever' 'everyone' 'father' 'film' 'from' 'giant'
 'got' 'had' 'hair' 'horror' 'hundreds' 'imagine' 'is' 'island' 'just'
 'location' 'love' 'loved' 'made' 'movie' 'movies' 'music' 'myself'
 'norman' 'now' 'of' 'on' 'paper' 'part' 'pin' 'played' 'plot' 'really'
 'redford' 'ridiculous' 'robert' 'safety' 'same' 'scenery' 'scottish'
 'seen' 'so' 'story' 'suited' 'terrible' 'the' 'there' 'these' 'they'
 'thin' 'this' 'to' 've' 'was' 'words' 'worst' 'you']
Count encoding doc 1: [1 1 1 2 0 1 0 0 2 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 2
1
 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 2 1 1 0 1 1 1 0 4 1 0 1 0 1 0 0
 1 0 0 1]
Count encoding doc 2: [0 0 0 3 1 0 1 1 0 1 2 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0
0
 1 0 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 4 0 1 0 1 2 2 1
 0 1 1 0]

Classi�cation

With this tabular representation, we can fit any model (e.g. Logistic regression)

Visualize coefficients: which words are indicative for positive/negative reviews?

Logistic regression accuracy: 0.8538

Neural networks on bag of words

We can also build neural networks on bag-of-word vectors

E.g. Use one-hot-encoding with 10000 most frequent words

Simple model with 2 dense layers, ReLU activation, dropout

Binary classification: single output node, sigmoid activation, binary cross-entropy loss
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])

Evaluation

Take a validation set of 10,000 samples from the training set

The validation loss peaks after a few epochs, after which the model starts to overfit

Performance is better than Logistic regression

PREDICTIONS

Let's look at a few predictions:

782/782 [==============================] - 2s 2ms/step
Review 0: ? please give this one a miss br br ? ? and the rest of the cast rendered terrible p
erformances the show is flat flat flat br br i don't know how michael madison could have allowe
d this one on his plate he almost seemed to know this wasn't going to work out and his performa
nce was quite ? so all you madison fans give this a miss
Predicted positiveness: [0.046]

Review 16: ? from 1996 first i watched this movie i feel never reach the end of my satisfactio
n i feel that i want to watch more and more until now my god i don't believe it was ten years a
go and i can believe that i almost remember every word of the dialogues i love this movie and i
love this novel absolutely perfection i love willem ? he has a strange voice to spell the words
black night and i always say it for many times never being bored i love the music of it's so mu
ch made me come into another world deep in my heart anyone can feel what i feel and anyone coul
d make the movie like this i don't believe so thanks thanks
Predicted positiveness: [0.956]

Word Embeddings

A word embedding is a numeric vector representation of a word

Can be manual or learned from an existing representation (e.g. one-hot)

Learning embeddings from scratch

Input layer uses fixed length documents (with 0-padding). 2D tensor (samples, max_length)

Add an embedding layer to learn the embedding

Create -dimensional one-hot encoding. Yields a 3D tensor (samples, max_length,)

To learn an -dimensional embedding, use hidden nodes. Weight matrix

Linear activation function: . 3D tensor (samples, max_length,)

Combine all word embeddings into a document embedding (e.g. global pooling).

Add (optional) layers to map word embeddings to the output. Learn embedding weights from data.

n n

m m W nxm

Xembed = WXorig m

Let's try this:
max_length = 100 # pad documents to a maximum number of words
vocab_size = 10000 # vocabulary size
embedding_length = 20 # embedding length (more would be better)

model = models.Sequential()
model.add(layers.Embedding(vocab_size, embedding_length, input_length=max_length))
model.add(layers.GlobalAveragePooling1D())
model.add(layers.Dense(1, activation='sigmoid'))

Training on the IMDB dataset: slightly worse than using bag-of-words?

Embedding of dim 20 is very small, should be closer to 100 (or 300)

We don't have enough data to learn a really good embedding from scratch

Pre-trained embeddings

With more data we can build better embeddings, but we also need more labels

Solution: learn embedding on auxiliary task that doesn't require labels

E.g. given a word, predict the surrounding words.

Also called self-supervised learning. Supervision is provided by data itself

Freeze embedding weights to produce simple word embeddings, or finetune to a new tasks

Most common approaches:

Word2Vec: Learn neural embedding for a word based on surrounding words

FastText: learns embedding for character n-grams

Can also produce embeddings for new, unseen words

GloVe (Global Vector): Count co-occurrences of words in a matrix

Use a low-rank approximation to get a latent vector representation

WORD2VEC

Move a window over text to get context words (-dim one-hot encoded)

Add embedding layer with linear nodes, global average pooling, and softmax layer(s)

CBOW: predict word given context, use weights of last layer as embedding

Skip-Gram: predict context given word, use weights of first layer as embedding

Scales to larger text corpora, learns relationships between words better

C V

N

W
′

NxV

W T
V xN

WORD2VEC PROPERTIES

Word2Vec happens to learn between words

Simple vector arithmetic can map words to plurals, conjugations, gender analogies,...

e.g. Gender relationships:

PCA applied to embeddings shows Country - Capital relationship

Careful: embeddings can capture present in the data.

Important unsolved problem!

interesting relationships

vecking − vecman + vecwoman ∼ vecqueen

gender and other biases

https://www.aclweb.org/anthology/N13-1090/
https://arxiv.org/abs/1607.06520

Doc2Vec

Alternative way to combine word embeddings (instead of global pooling)

Adds a paragraph (or document) embedding: learns how paragraphs (or docs) relate to each other

Captures document-level semantics: context and meaning of entire document

Can be used to determine semantic similarity between documents.

FASTTEXT

Limitations of Word2Vec:

Cannot represent new (out-of-vocabulary) words

Similar words are learned independently: less efficient (no parameter sharing)

E.g. 'meet' and 'meeting'

FastText: same model, but uses character n-grams

Words are represented by all character n-grams of length 3 to 6

"football" 3-grams: <fo, foo, oot, otb, tba, bal, all, ll>

Because there are so many n-grams, they are hashed (dimensionality = bin size)

Representation of word "football" is sum of its n-gram embeddings

Negative sampling: also trains on random negative examples (out-of-context words)

Weights are updated so that they are less likely to be predicted

GLOBAL VECTOR MODEL (GLOVE)

Builds a co-occurence matrix : counts how often 2 words occur in the same context

Learns a k-dimensional embedding through matrix factorization with rank k

Actually learns 2 embeddings and (differ in random initialization)

Minimizes loss , where and are bias terms and is a weighting function

X

W

W W ′

L bi b′
i f

L =
V

∑
i,j=1

f(Xij)(wiw
′
j

+ bi + b′
j − log(Xij))2

Let's try this
Download the

We can now get embeddings for 400,000 English words

E.g. 'queen' (in 100-dim):

GloVe embeddings trained on Wikipedia

array([-0.5 , -0.708, 0.554, 0.673, 0.225, 0.603, -0.262, 0.739,
 -0.654, -0.216, -0.338, 0.245, -0.515, 0.857, -0.372, -0.588,
 0.306, -0.307, -0.219, 0.784, -0.619, -0.549, 0.431, -0.027,
 0.976, 0.462, 0.115, -0.998, 1.066, -0.208, 0.532, 0.409,
 1.041, 0.249, 0.187, 0.415, -0.954, 0.368, -0.379, -0.68 ,
 -0.146, -0.201, 0.171, -0.557, 0.719, 0.07 , -0.236, 0.495,
 1.158, -0.051, 0.257, -0.091, 1.266, 1.105, -0.516, -2.003,
 -0.648, 0.164, 0.329, 0.048, 0.19 , 0.661, 0.081, 0.336,
 0.228, 0.146, -0.51 , 0.638, 0.473, -0.328, 0.084, -0.785,
 0.099, 0.039, 0.279, 0.117, 0.579, 0.044, -0.16 , -0.353,
 -0.049, -0.325, 1.498, 0.581, -1.132, -0.607, -0.375, -1.181,
 0.801, -0.5 , -0.166, -0.706, 0.43 , 0.511, -0.803, -0.666,
 -0.637, -0.36 , 0.133, -0.561], dtype=float32)

https://nlp.stanford.edu/projects/glove

Same simple model, but with frozen GloVe embeddings: much worse!
embedding_layer = layers.Embedding(input_dim=10000, output_dim=100,
 input_length=max_length, trainable=False)
embedding_layer.set_weights([weights]) # set pre-trained weigths
model = models.Sequential([
 embedding_layer, layers.GlobalAveragePooling1D(),
 layers.Dense(1, activation='sigmoid')]

Sequence-to-sequence (seq2seq) models

Global average pooling or flattening destroys the word order

We need to model sequences explictly, e.g.:

1D convolutional models: run a 1D filter over the input data

Fast, but can only look at small part of the sentence

Recurrent neural networks (RNNs)

Can look back at the entire previous sequence

Much slower to train, have limited memory in practice

Attention-based networks (Transformers)

Best of both worlds: fast and very long memory

seq2seq models

Produce a series of output given a series of inputs over time

Can handle sequences of different lengths

Label-to-sequence, Sequence-to-label, seq2seq,...

Autoregressive models (e.g. predict the next character, unsupervised)

1D convolutional networks

Similar to 2D convnets, but moves only in 1 direction (time)

Extract local 1D patch, apply filter (kernel) to every patch

Pattern learned can later be recognized elsewhere (translation invariance)

Limited memory: only sees a small part of the sequence (receptive field)

You can use multiple layers, dilations,... but becomes expensive

Looks at 'future' parts of the series, but can be made to look only at the past

Known as 'causal' models (not related to causality)

Same embedding, but add 2 Conv1D layers and MaxPooling1D . Better!
model = models.Sequential([
 embedding_layer,
 layers.Conv1D(32, 7, activation='relu'),
 layers.MaxPooling1D(5),
 layers.Conv1D(32, 7, activation='relu'),
 layers.GlobalAveragePooling1D(),
 layers.Dense(1, activation='sigmoid')]

157/157 [==============================] - 3s 18ms/step - loss: 0.0807 - accuracy: 0.9932 - val
_loss: 1.5570 - val_accuracy: 0.8172

Recurrent neural networks (RNNs)

Adds a recurrent connection that concats previous output to next input

Hidden layer

Unbounded memory, but training requires backpropagation through time

Requires storing previous network states (slow + lots of memory)

Vanishing gradients strongly limit practical memory

Improved with gating: learn what to input, forget, output (LSTMs, GRUs,...)

ht = σ(W [
xt

ht−1
] + b)

Simple self-attention

Compute dot product of input vector with every (including itself):

Compute softmax over all these weights (positive, sum to 1)

Multiply by each input vector, and sum everything up

Can be easily vectorized: ,

xi xj wij

Y T = WXT W = softmax(XTX)

Simple self-attention (2)

Output is mostly influenced by the current input (is largest)

Mixes in information from other inputs according to how similar they are

Doesn't learn (no parameters), the embedding of defines self-attention

 is linear, vanishing gradients only through softmax

Has no problem looking very far back in the sequence

Operates on sets (permutation invariant): allows img-to-set, set-to-set,... tasks

No access to sequence. For seq tasks we encode sequence in embedding

wii

X

Y T = WXT

Simple self-attention layer

Let's add a simple self-attention layer to our movie sentiment model

Without self-attention, every word would contribute independently from others

Exactly as in a bag-of-words model

The word terrible will likely result in a negative prediction

Simple self-attention layer

Self-attention can learn that the meaning on the word terrible is inverted by the presence of the word

not, even if it is further away in the sequence.

In general, each self attention layer can learn specific relationships between words (e.g. inversion).

We'll need many of them.

Standard self-attention

Inputs occur in one of 3 positions in the self-attention layer:

Value : input vector that provides the output, weighted by:

Query : the vector that corresponds to the wanted output

Key : The vector that the query is matched aganinst

Works as a soft version of a dictionary, in which:

Every key matches the query to some extent (w.r.t. its dot product)

A weighted mixture of all values (normalized by softmax)

v

q

k

Standard self-attention

We want to learn how each of these interact by adding learned transformations

Makes self-attention more flexible, learnable

Learn what to pay attention to in the input (e.g. sequence, image,...)

ki = Kxi + bk

qi = Qxi + bq

vi = V xi + bv

Standard self-attention (2)

Inputs can have multiple relationships with each other (e.g. negation, strengtening,...)

To learn these in parallel, we can split the self-attention in multiple heads

Input vector is embedded (linearly) into lower dimensionality, multiple times

Standard self-attention (3)

The softmax operation can still lead to vanishing gradients (unless values are small)

We can scale the dot product by the input dimension : k w
′

ij =
xi

Txj

√k

Transformer model

Repeat self-attention multiple times in controlled fashion

Works for sequences, images, graphs,... (learn how sets of objects interact)

Models consist of multiple transformer blocks, usually:

Layer normalization (every input is normalized independently)

Self-attention layer (learn interactions)

Residual connections (preserve gradients in deep networks)

Feed-forward layer (learn mappings)

Positional encoding

We need some way to tell the self-attention layer about position in sequencet

Represent position by vectors, using some easy-to-learn predictable pattern

Add these encodings to vector embeddings

Give information on how far one input is fron the others

Summary

Bag of words representations

Useful, but limited, since they destroy the order of the words in text

Word embeddings

Learning word embeddings from labeled data is hard, you may need a lot of data

Pretrained word embeddings

Word2Vec: learns good embeddings and interesting relationships

FastText: can also compute embeddings for entirely new words

GloVe: also takes the global context of words into account

Sequence-to-sequence models

1D convolutional nets (fast, limited memory)

RNNs (slow, also quite limited memory)

Self-attention (allows very large memory)

Transformers

Acknowledgement
Several figures came from the excellent VU Deep Learning course

https://dlvu.github.io/

