Lecture 9: Convolutional Neural
Networks

Handling image data

Joaquin Vanschoren, Eindhoven University of Technology

Overview

Image convolution
Convolutional neural networks

Data augmentation

Model interpretation

Using pre-trained networks (transfer learning)

Convolution

e Operation that transforms an image by sliding a smaller image (called a filter or kernel) over the

image and multiplying the pixel values
» Slide an n x n filter over n x n patches of the original image
» Every pixel is replaced by the sum of the element-wise products of the values of the image

patch around that pixel and the kernel

kernel and image patch are n x n matrices
pixel out = np.sum(kernel * image patch)

Response map,

quantifying the presence

of the filter’s pattern at
Original input different locations

Single filter

 Different kernels can detect different types of patterns in the image

Image and kernel Hor. edge filter Filtered image

Image and kernel Edge detect filter

Image and kernel Diag. edge filter Filtered image

Demonstration on Google streetview data

House numbers photographed from Google streetview imagery, cropped and centered around digits, but
with neighboring numbers or other edge artifacts.

L 12431

For recognizing digits, color is not important, so we grayscale the images
1 2

Demonstration

Image and kernel Hor. edge filter Filtered image

Image and kernel Diag. edge filter Filtered image

Image and kernel Edge detect filter Filtered image

Image convolution in practice

» How do we know which filters are best for a given image?
e Families of kernels (or filter banks) can be run on every image
» Gabor, Sobel, Haar Wavelets, ...
o Gabor filters: Wave patterns generated by changing:
» Frequency: narrow or wide ondulations
» Theta: angle (direction) of the wave
= Sigma: resolution (size of the filter)

Demonstration

freq: 0.16, theta: 1.2, sigma: 4.0 freq: 0.31, theta: 0, sigma: 3.6 freq: 0.36, theta: 1.6, sigma: 1.3

-

Demonstration on the streetview data

Original Gabor kernel Response magnitude

Filter banks

« Different filters detect different edges, shapes,...
» Not all seem useful

theta=0.00, theta=0.00, theta=0.00, theta=0.00, theta=0.79, theta=0.79, theta=0.79, theta=0.79,
frequency=0.10 frequency=0.10 frequency=0.20 frequency=0.20 frequency=0.10 frequency=0.10 frequency=0.20 frequency=0.20
sigma=1.00 sigma=3.00 sigma=1.00 sigma=3.00 sigma=1.00 sigma=3.00 sigma=1.00 sigma=3.00

BOONEaE

Another example: Fashion MNIST

Demonstration

Original Gabor kernel Response magnitude

Fashion MNIST with multiple filters (filter bank)

theta=0.00, theta=0.00, theta=0.00, theta=0.00, theta=0.79, theta=0.79, theta=0.79, theta=0.79,
frequency=0.10 frequency=0.10 frequency=0.20 frequency=0.20 frequency=0.10 frequency=0.10 frequency=0.20 frequency=0.20
sigma=1.00 sigma=3.00 sigma=1.00 sigma=3.00 sigma=1.00 sigma=3.00 sigma=1.00 sigma=3.00

DNONEEERZ
Sl 19 }° 4] -
w6 Ld 1 1
S I

boot

shirt

dress

Convolutional neural nets

Finding relationships between individual pixels and the correct class is hard

We want to discover 'local' patterns (edges, lines, endpoints)

Representing such local patterns as features makes it easier to learn from them

We could use convolutions, but how to choose the filters?

Convolutional Neural Networks (ConvNets)

Instead of manually designing the filters, we can also learn them based on data
» Choose filter sizes (manually), initialize with small random weights

Forward pass: Convolutional layer slides the filter over the input, generates the output

Backward pass: Update the filter weights according to the loss gradient

[llustration for 1 filter:

Input tensor ps] Output tensor

3 channels (green, blue, red) (feature map)

Convolutional layers: Feature maps

» One filter is not sufficient to detect all relevant patterns in an image

« A convolutional layer applies and learns d filter in parallel

o Slide d filters across the input image (in parallel) -> a (1x1xd) output per patch
o Reassemble into a feature map with d 'channels', a (width x height x d) tensor.

Wfth/v V\HELth
Input Input feature map
depth

Dot product

@ 3 x 3 input patches
with kernel t
Output
depth l @ Transformed patches

N L/

Output Output feature map
depth

Border effects (zero padding)

e Consider a 5x5 image and a 3x3 filter: there are only 9 possible locations, hence the output is a 3x3
feature map
« If we want to maintain the image size, we use zero-padding, adding O's all around the input tensor.

XX X

ROXOEON

XXX
DXIXIXIXIX
RO OO

etc.

Undersampling (striding)

» Sometimes, we want to downsample a high-resolution image
» Faster processing, less noisy (hence less overfitting)
e One approach is to skip values during the convolution
» Distance between 2 windows: stride length
o Example with stride length 2 (without padding):

Max-pooling

Another approach to shrink the input tensors is max-pooling :
= Run afilter with a fixed stride length over the image
o Usually 2x2 filters and stride lenght 2
= The filter simply returns the max (or avg) of all values

Agressively reduces the number of weights (less overfitting)

Information from every input node spreads more quickly to output nodes
» In pure convnets, one input value spreads to 3x3 nodes of the first layer, 5x5 nodes of
the second, etc.
= Without maxpooling, you need much deeper networks, harder to train

Increases translation invariance : patterns can affect the predictions no matter where they occur in
the image

Convolutional nets in practice

e Use multiple convolutional layers to learn patterns at different levels of
abstraction
» Find local patterns first (e.g. edges), then patterns across those
patterns

Use MaxPooling layers to reduce resolution, increase translation invariance

Use sufficient filters in the first layer (otherwise information gets lost)

In deeper layers, use increasingly more filters

m Preserve information about the input as resolution descreases

= Avoid decreasing the number of activations (resolution x nr of filters)
e For very deep nets, add skip connections to preserve information (and
gradients)

= Sums up outputs of earlier layers to those of later layers (with same

dimensions)

Example with Keras:

e Conv2D for 2D convolutional layers
» 32 filters (default), randomly initialized (from uniform distribution)
» Deeper layers use 64 filters
» Filter size is 3x3
= RelU activation to simplify training of deeper networks
e MaxPooling2D for max-pooling
= 2x2 pooling reduces the number of inputs by a factor 4

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu',
input shape=(28, 28, 1)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

Observe how the input image on 28x28x1 is transformed to a 3x3x64 feature map

o Convolutional layer:
= No zero-padding: every output 2 pixels less in every dimension
= 320 weights: (3x3 filter weights + 1 bias) * 32 filters

o After every MaxPooling, resolution halved in every dimension

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 26, 26, 32) 320
max_pooling2d (MaxPooling2D (None, 13, 13, 32) 0

)

conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
max_pooling2d_1 (MaxPooling (None, 5, 5, 64) 0

2D)

conv2d_2 (Conv2D) (None, 3, 3, 64) 36928

Total params: 55,744
Trainable params: 55,744
Non-trainable params: 0

Completing the network

» To classify the images, we still need a Dense and Softmax layer.
» We need to flatten the 3x3x64 feature map to a vector of size 576

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

Complete network

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 26, 26, 32) 320
max_pooling2d (MaxPooling2D (None, 13, 13, 32) 0

)

conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
max_pooling2d_ 1 (MaxPooling (None, 5, 5, 64) 0

2D)

conv2d_2 (Conv2D) (None, 3, 3, 64) 36928
flatten (Flatten) (None, 576) 0
dense (Dense) (None, 64) 36928
dense_1 (Dense) (None, 10) 650

Total params:

93,322

Trainable params: 93,322
Non-trainable params: 0

e Flatten adds alot of weights

e |[nstead, we cando GlobalAveragePooling:returns average of each
activation map

e This sometimes works even without adding a dense layer (the number of

outputs is similar to the number of classes)

model.add(layers.GlobalAveragePooling2D())
model.add(layers.Dense(10, activation='softmax'))

7

>

1 'FEEYN.

e With GlobalAveragePooling: much fewer weights to learn

e Use with caution: this destroys the location information learned by the CNN

e Not ideal for tasks such as object localization

Model: "sequential 1"

Layer (type) Output Shape

conv2d 3 (Conv2D) (None, 26, 26, 32)

max pooling2d 2 (MaxPooling (None, 13, 13, 32)
2D)

conv2d 4 (Conv2D) (None, 11, 11, 64)

max pooling2d 3 (MaxPooling (None, 5, 5, 64)
2D)

conv2d 5 (Conv2D) (None, 3, 3, 64)

global average pooling2d (G (None, 64)
lobalAveragePooling2D)

dense_ 2 (Dense) (None, 10)

Total params: 56,394
Trainable params: 56,394

Param #

Run the model on MNIST dataset

e Train and test as usual: 99% accuracy
» Compared to 97,8% accuracy with the dense architecture

Accuracy: 0.988800048828125

10 7 M
mmmnHnm
0.8 1
=== |OSS
0.6 1
= = = gccuracy
e val_loss
0.4 1 == \Val_accuracy
0.2 1
L ™ L ™ [e " .
.Ll-—-———-——.—-mm
0.0 A

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
epochs

Tip:

e Training ConvNets can take a lot of time
e Save the trained model (and history) to disk so that you can reload it later

model.save(os.path.join(model dir, 'mnist.h5'))
with open(os.path.join(model dir, 'mnist history.p'), 'wb') as
file pi:

pickle.dump(history.history, file pi)

Cats vs Dogs

e A more realistic dataset: Cats vs Dogs

» Colored JPEG images, different sizes

= Not nicely centered, translation invariance is important
e Preprocessing

» Create balanced subsample of 4000 colored images

o 3000 for training, 1000 validation

» Decode JPEG images to floating-point tensors

» Rescale pixel values to [0,1]

» Resize images to 150x150 pixels

https://www.kaggle.com/c/dogs-vs-cats/data

Data generators

e ImageDataGenerator : allows to encode, resize, and rescale JPEG images
e Returns a Python generator we can endlessly query for batches of images
o Separately for training, validation, and validation set

train generator =
ImageDataGenerator (rescale=1./255).flow from directory(

train dir, # Directory with images
target size=(150, 150), # Resize images
batch size=20, # Return 20 images at a time

class mode='binary') # Binary labels

Since the images are larger and more complex, we add another convolutional layer and increase the
number of filters to 128.

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
input shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(l, activation='sigmoid'))

Model: "sequential 1"

Layer (type) Output Shape Param #
conv2d_ 3 (Conv2D) (None, 148, 148, 32) 896
max_pooling2d 2 (MaxPooling (None, 74, 74, 32) 0

2D)

conv2d 4 (Conv2D) (None, 72, 72, 64) 18496
max_pooling2d 3 (MaxPooling (None, 36, 36, 64) 0

2D)

conv2d 5 (Conv2D) (None, 34, 34, 128) 73856
max_pooling2d 4 (MaxPooling (None, 17, 17, 128) 0

2D)

conv2d_6 (Conv2D) (None, 15, 15, 128) 147584
max_pooling2d 5 (MaxPooling (None, 7, 7, 128) 0

2D)

flatten_ 1 (Flatten) (None, 6272) 0
dense 2 (Dense) (None, 512) 3211776
dense_3 (Dense) (None, 1) 513

Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0

Training

e The f£it function also supports generators
» 100 steps per epoch (batch size: 20 images per step), for 30 epochs
» Provide a separate generator for the validation data

model.compile(loss='binary crossentropy',
optimizer=optimizers.RMSprop(lr=le-4),
metrics=['acc'])
history = model.fit(
train generator, steps per epoch=100,
epochs=30, verbose=0,
validation data=validation_generator,
validation steps=50)

Results

e The network seems to be overfitting. Validation accuracy is stuck at 75% while the training accuracy
reaches 100%
e There are many things we can do:
» Regularization (e.g. Dropout, L1/L2, Batch Normalization,...)
» Generating more training data
» Meta-learning: Use pretrained rather than randomly initialized filters

1.2
1.0 A
0.8 1
0.6 -
] =
0.4
=== 3cC ..,
|
0.2 - === val loss "'-.....
|]
m— Val_acc ."""--..
0 5 10 15 20 25 30

Data augmentation

e Generate new images via image transformations
» Images will be randomly transformed every epoch
* We can again use a data generator to do this

datagen = ImageDataGenerator(

rotation range=40, # Rotate image up to 40 degrees

width shift range=0.2, # Shift image left-right up to 20% of
image width

height shift range=0.2,# Shift image up-down up to 20% of
image height

shear range=0.2, # Shear (slant) the image up to 0.2
degrees
zoom_range=0.2, # Zoom in up to 20%

horizontal flip=True, # Horizontally flip the image
fill mode='nearest')

We also add Dropout before the Dense layer

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3),

activation='relu',

input shape=(150,
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())
model.add(layers.Dropout(0.5))

model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(l, activation='sigmoid'))

(Almost) no more overfitting!

0.8

0.7

0.6

0.5

0.4

loss
acc
val_loss
val_acc

20

Real-world CNNs

VGG16

Deeper architecture (16 layers): allows it to learn more complex high-level features
m Textures, patterns, shapes,...

Small filters (3x3) work better: capture spatial information while reducing number of parameters

Max-pooling (2x2): reduces spatial dimension, improves translation invariance
= | ower resolution forces model to learn robust features (less sensitive to small input
changes)
= Only after every 2 layers, otherwise dimensions reduce too fast

Downside: too many parameters, expensive to train

1R RERRE RN

- Convolution Softmax

i Maxpool - Fully connected

Inceptionv3

¢ Inception modules: parallel branches learn features of different sizes and scales (3x3, 5x5, 7x7....)
m Add reduction blocks that reduce dimensionality via convolutions with stride 2
e Factorized convolutions: a 3x3 conv. can be replaced by combining 1x3 and 3x1, and is 33%

cheaper
= A bx5 can be replaced by combining 3x3 and 3x3, which can in turn be factorized as above

¢ 1x1 convolutions, or Network-In-Network (NIN) layers help reduce the number of channels: cheaper

e An auxiliary classifier adds an additional gradient signal deeper in the network

/a

/’E‘\. B [, N B8 /ﬁg l

% IEEE BE8
G Y B EEEE? Eﬁf E“ ﬁi g

N LA
B Convoluiion arTT \ ﬁ/

Maxpool Fully connected
B Maxp B Fuly g Auxiliary classifier
Avgpool Softmax

- Concat Dropout

E88
IIIIIII{I

ResNetbO

e Residual (skip) connections: add earlier feature map to a later one (dimensions must match)

m |[nformation can bypass layers, reduces vanishing gradients, allows much deeper nets
e Residual blocks: skip small number or layers and repeat many times

= Match dimensions though padding and 1x1 convolutions

= \WWhen resolution drops, add 1x1 convolutions with stride 2
e Can be combined with Inception blocks

2X 3x 5x 2X

B} EEB- EBE- BEE-BB8- EEE- EBEE- BEE- EEE-HE
B

2/ x4
z/ X1
z/1 X1

- Convolution Q Residual
B Maxpool B Fully connected

Softmax

Interpreting the model

o Let's see what the convnet is learning exactly by observing the intermediate feature maps
= Alayer's output is also called its activation

» We can choose a specific test image, and observe the outputs

» We can retrieve and visualize the activation for every filter for every layer

Layer O: has activations of resolution 148x148 for each of its 32 filters
Layer 2: has activations of resolution 72x72 for each of its 64 filters
Layer 4: has activations of resolution 34x34 for each of its 128 filters
Layer 6: has activations of resolution 15x15 for each of its 128 filters

Model: "sequential 3"

Layer (type) Output Shape Param #
conv2d_10 (Conv2D) (None, 148, 148, 32) 896
max_pooling2d 8 (MaxPooling (None, 74, 74, 32) 0

2D)

conv2d_ 11 (Conv2D) (None, 72, 72, 64) 18496
max_pooling2d 9 (MaxPooling (None, 36, 36, 64) 0

2D)

conv2d 12 (Conv2D) (None, 34, 34, 128) 73856
max_pooling2d 10 (MaxPoolin (None, 17, 17, 128) 0

g2D)

conv2d 13 (Conv2D) (None, 15, 15, 128) 147584
max_pooling2d 11 (MaxPoolin (None, 7, 7, 128) 0

g2D)

flatten 2 (Flatten) (None, 6272) 0
dropout (Dropout) (None, 6272) 0
dense_4 (Dense) (None, 512) 3211776
dense 5 (Dense) (None, 1) 513

Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0

e To extract the activations, we create a new model that outputs the trained layers
= 8 output layers in total (only the convolutional part)
o We input a test image for prediction and then read the relevant outputs

= [layer.output for layer in model.layers[:8]]

layer outputs =
activation model = models.Model (inputs=model.input,
outputs=layer outputs)

activations = activation model.predict(img tensor)

Output of the first Conv2D layer, 3rd channel (filter):

e Similar to a diagonal edge detector
e Your own channels may look different

Input image Activation of filter 6

Output of filter 16:

o Cat eye detector?

Input image Activation of filter 25

The same filter responds quite differently for other inputs (green detector?).

Input image Activation of filter 25

 First 2 convolutional layers: various edge detectors

Activation of layer 1 (conv2d_10)

e 3rd convolutional layer: increasingly abstract: ears, eyes

e Last convolutional layer: more abstract patterns
o Empty filter activations: input image does not have the information that the filter was interested in

Activation of layer 7 (conv2d_13)

e Same layer, with dog image input
» Very different activations

Activation of layer 7 (conv2d_13)

Spatial hierarchies

e Deep convnets can learn spatial hierarchies of patterns
» First layer can learn very local patterns (e.g. edges)
» Second layer can learn specific combinations of patterns
= Every layer can learn increasingly complex abstractions

cat

|
0] v {))

Visualizing the learned filters

o Visualize filters by finding the input image that they are maximally responsive to
e gradient ascent in input space : start from a random image z, use loss to update the input values

to values that the filter responds to more strongly (keep weights fixed)

+1) =A@+ —px X7

from keras import backend as K
input img = np.random.random((1, size, size, 3)) * 20 + 128.
loss = K.mean(layer output[:, :, :, filter index])
grads = K.gradients(loss, model.input)[0] # Compute gradient
for i in range(40): # Run gradient ascent for 40 steps

loss v, grads v = K.function([input img], [loss, grads])

input img data += grads v * step

o Learned filters of last convolutional layer
» More focused on center, some vague cat/dog head shapes

Let's do this again for the VGG16 network pretrained on ImageNet (much larger)

model = VGG1l6 (weights='imagenet', include top=False)

Model: "vgglé6"

Layer (type) Output Shape Param #
input 1 (InputLayer) [(None, None, None, 3)] 0
blockl convl (Conv2D) (None, None, None, 64) 1792
blockl conv2 (Conv2D) (None, None, None, 64) 36928
blockl pool (MaxPooling2D) (None, None, None, 64) 0
block2 convl (Conv2D) (None, None, None, 128) 73856
block2 conv2 (Conv2D) (None, None, None, 128) 147584

block2 pool (MaxPooling2D) (None, None, None, 128) 0

block3 convl (Conv2D) (None, None, None, 256) 295168
block3 _conv2 (Conv2D) (None, None, None, 256) 590080
block3_conv3 (Conv2D) (None, None, None, 256) 590080

block3 pool (MaxPooling2D) (None, None, None, 256) 0

block4 convl (Conv2D) (None, None, None, 512) 1180160
block4 conv2 (Conv2D) (None, None, None, 512) 2359808
block4 conv3 (Conv2D) (None, None, None, 512) 2359808

block4 pool (MaxPooling2D) (None, None, None, 512) 0
block5 convl (Conv2D) (None, None, None, 512) 2359808
block5 conv2 (Conv2D) (None, None, None, 512) 2359808

block5 conv3 (Conv2D) (None, None, None, 512) 2359808

block5 pool (MaxPooling2D) (None, None, None, 512) 0

Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

« Visualize convolution filters 0-2 from layer 5 of the VGG network trained on ImageNet

e Some respond to dots or waves in the image

E
i
'
H
.
i
¥
=
'
:
r
4
.

w mma g e

First 64 filters for 1st convolutional layer in block 1: simple edges and colors

Filters in 2nd block of convolution layers: simple textures (combined edges and colors)

Filters in 3rd block of convolution layers: more natural textures

Filters in 4th block of convolution layers: feathers, eyes, leaves,...

Visualizing class activation

e We can also visualize which part of the input image had the greatest influence on the final
classification. Helps to interpret what the model is paying attention to.
e Class activation maps : produces a heatmap over the input image
= Choose a convolution layer, do Global Average Pooling (GAP) to get one output per filter
= Get the weights between those outputs and the class of interest
» Compute the weighted sum of all filter activations: combines what each filter is responding

to and how much this affects the class prediction

. 4 8%.
] 4 UU o/

Class Activation Mapplng

Class
Activation
Map

raliar

Example on VGG with a specific input image
o Take the last convolutional layer of VGG pretrained on ImageNet

m [t consists of 512 filters of size 14x14

model = VGG1l6 (weights='imagenet')
last_conv_layer = model.get layer('block5 conv3')

Last conv layer shape: (None, 14, 14, 512)

e Choose an input image and preprocess it so we can feed it to the model

img = image.load img(img path, target size=(224, 224))

¢ Find the output node for its class ('african elephant’, class 386)

african elephant output = model.output[:, 386]

e VGG doesn't use GAP. Compute the average gradient from the output node to the conv layer
e Multiply (channel-wise) with the activations of the conv layer

grads = K.gradients(african elephant output, last conv_layer.output)[0]
pooled grads = K.mean(grads, axis=(0, 1, 2))
for i in range(512): # 512 filters
conv_layer output value[:, :, 1] *= pooled grads value[i]
heatmap = np.mean(conv_layer output value, axis=-1)

e Visualize heatmap. It's 14x14 since that's the output dimension of the conv layer

e Upscaled and superimposed on the original image
e The model looked at the face of the baby elephant and the trunk of the large elephant

Class activation map

Using pretrained networks

* We can re-use pretrained networks instead of training from scratch

e Learned features can be a generic model of the visual world

e Use convolutional base to contruct features, then train any classifier on new data
» Also called transfer learning , which is a kind of meta-learning

Prediction Prediction Prediction
Trained ain New classifier

classifier c 514 (randomly initialized)

A A A
Trained Trained Trained
convolutional convolutional convolutional
base base base
(frozen)

Input Input Input

e Let's instantiate the VGG16 model (without the dense layers)
 Final feature map has shape (4, 4, 512)

conv_base = VGGl6(weights='imagenet', include top=False,
input shape=(150, 150, 3))

Model: "vggl6"

Layer (type) Output Shape Param #
input 2 (InputLayer) [(None, 150, 150, 3)] 0
blockl convl (Conv2D) (None, 150, 150, 64) 1792
blockl conv2 (Conv2D) (None, 150, 150, 64) 36928
blockl pool (MaxPooling2D) (None, 75, 75, 64) 0
block2 convl (Conv2D) (None, 75, 75, 128) 73856
block2 conv2 (Conv2D) (None, 75, 75, 128) 147584
block2 pool (MaxPooling2D) (None, 37, 37, 128) 0
block3_convl (Conv2D) (None, 37, 37, 256) 295168
block3 conv2 (Conv2D) (None, 37, 37, 256) 590080
block3 conv3 (Conv2D) (None, 37, 37, 256) 590080
block3 pool (MaxPooling2D) (None, 18, 18, 256) 0
block4 convl (Conv2D) (None, 18, 18, 512) 1180160
block4 conv2 (Conv2D) (None, 18, 18, 512) 2359808
block4 conv3 (Conv2D) (None, 18, 18, 512) 2359808
block4 pool (MaxPooling2D) (None, 9, 9, 512) 0

block5 convl (Conv2D) (None, 9, 9, 512) 2359808

block5 conv2 (Conv2D) (None, 9, 9, 512)
block5 conv3 (Conv2D) (None, 9, 9, 512)

block5 pool (MaxPooling2D) (None, 4, 4, 512)

2359808

2359808

Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

Using pre-trained networks: 3 ways

o Fast feature extraction (similar task, little data)
» Call predict from the convolutional base to build new features
» Use outputs as input to a new neural net (or other algorithm)
e End-to-end tuning (similar task, lots of data + data augmentation)
» Extend the convolutional base model with a new dense layer
» Train it end to end on the new data (expensive!)
e Fine-tuning (somewhat different task)
» Unfreeze a few of the top convolutional layers, and retrain
o Update only the more abstract representations

L Feature extraction:
remove last layers, use output as features
if task is quite different, remove more layers

End-to-end tuning:
train from initialized weights
unfreeze last layers, tune on new task

pre-trained
convnet

Fast feature extraction (without data augmentation)

e Run every batch through the pre-trained convolutional base

generator = datagen.flow from directory(dir, target size=(150, 150),
batch size=batch size, class mode='binary')
for inputs batch, labels batch in generator:
features _batch = conv_base.predict(inputs_batch)

o Build Dense neural net (with Dropout)
e Train and evaluate with the transformed examples

model = models.Sequential()

model.add(layers.Dense(256, activation='relu', input dim=4 * 4 *
512))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(l, activation='sigmoid'))

 Validation accuracy around 90%, much better!
« Still overfitting, despite the Dropout: not enough training data

Max val acc 0.90500003

H ---llllllllll.ll.-llnl-.uull-.-....
mummnE

"_:Wr---‘---------..---.---------.----.-..-'--------
0.8- 'y

L 4

L 4

=== |OSS

0.6 A . s

L]

. = \/al_lOss
0.4 - = Val_acc
0.2 1

0 5 10 15 20 M M

Fast feature extraction (with data augmentation)

e Simply add the Dense layers to the convolutional base
» Freeze the convolutional base (before you compile)
» Without freezing, you train it end-to-end (expensive)

model = models.Sequential()

model.add(conv_base)

model.add(layers.Flatten())
model.add(layers.Dense (256, activation='relu'))
model.add(layers.Dense(l, activation='sigmoid'))
conv_base.trainable = False

We now get about 90% accuracy again, and very little overfitting

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Max val_acc 0.906

LA |

L

L]
.'-..ll'.

ammnuyg
.....--.-..lll....lllll

= == |OSS
| B B | acc

e \/al _lOss

= \/a| acc

15 20 25
epochs

30

Fine-tuning

o Add your custom network on top of an already trained base network.
» Freeze the base network, but unfreeze the last block of conv layers.

for layer in conv_base.layers:
if layer.name == 'block5 convl':
layer.trainable = True
else:
layer.trainable = False

Visualized

Y

Convolution2D

A 4

Convolution2D

A4

MaxPooling2D

v

Convolution2D

X

Convolution2D

MaxPooling2D

v

Convolution2D

T

Convolution2D

Convolution2D

MaxPooling2D

v

Conv block 1:
frozen

Conv block 2:
frozen

Conv block 3:
frozen

v

Convolution2D

L L

Convolution2D

Convolution2D

MaxPooling2D

Y

Convolution2D

-

Convolution2D

Y

Convolution2D

X

MaxPooling2D

y

Flatten

Y
Dense
A 4

Dense

Conv block 4:
frozen

We fine-tune
Conv block 5

We fine-tune
our own
fully-connected
classifier

e Load trained network, finetune
» Use a small learning rate, large number of epochs
= You don't want to unlearn too much: catastrophic forgetting

model = load model(os.path.join(model dir,
'cats_and dogs small 3b.h5'))
model.compile(loss='binary crossentropy',
optimizer=optimizers.RMSprop(lr=1le-5),
metrics=['acc'])
history = model.fit(
train generator, steps per epoch=100, epochs=100,
validation data=validation_ generator,
validation steps=50)

Almost 95% accuracy. The curves are quite noisy, though.

Max val_acc 0.90800005

0.9 -

0.8 -

0-7 7 === |OSS

0.6 1 === 3CC

05 e \/al _lOss

' = \/a| acc

0.4 A

0.3_ ..‘."I""‘-...’.Q.‘.Q"‘“’0”.“".."...""Q‘.“'. .,

0'2 i T 1 T 1 T 1
0 20 40 60 80 100

epochs

» We can smooth the learning curves using a running average

Max val_acc 0.9039536851123335

0.9 - ---.-...-......-.IIIII.I...-.Ill'IllIl A mmnm
0.8 1
0.7 A
= == |OSS
0.6 1 == ® gCC
mm \/al_|lOSS
0.5 A
= \/al _acc
0.4 -
0.3 - ll-.-l---.---.---.---...-l.-...............-...
0.2 - T T T T T T

0 20 40 60 80 100
epochs

Take-aways

Convnets are ideal for attacking visual-classification problems.

They learn a hierarchy of modular patterns and concepts to represent the visual world.

Representations are easy to inspect

Data augmentation helps fight overfitting

You can use a pretrained convnet to build better models via transfer learning

