
Lecture 7. Bayesian Learning
Learning in an uncertain world

Joaquin Vanschoren



 XKCD, Randall Monroe



Bayes' rule
Rule for updating the probability of a hypothesis  given data 

 is the posterior probability of class  given data .
 is the prior probability of class : what you believed before you saw the data 

 is the likelihood of data point  given that the class is  (computed from your dataset)
 is the prior probability of the data (marginal likelihood): the likelihood of the data  under any

circumstance (no matter what the class is)

c x

P(c|x) c x

P(c) c x

P(x|c) x c

P(x) x



Example: exploding sun
Let's compute the probability that the sun has exploded

Prior : the sun has an estimated lifespan of 10 billion years, 

Likelihood that detector lies: 

The one positive observation of the detector increases the probability

P(exploded) P(exploded) = 1
4.38x1013

P(lie) = 1
36

P(exploded|yes) =

=

=

P(yes|exploded)P(exploded)
P(yes)

(1 − P(lie))P(exploded)
P(exploded)(1 − P(lie)) + P(lie)(1 − P(exploded))

1

1.25226x1012



Example: COVID test
What is the probability of having COVID-19 if a 96% accurate test returns positive? Assume a false

positive rate of 4%

Prior  (117M cases, 7.9B people)

, and 

If test is positive, prior becomes . 2nd positive test: 

P(C) : 0.015
P(TP) = P(pos|C) = 0.96 P(FP) = (pos|notC) = 0.04

P(C) = 0.268 P(C|pos) = 0.9

P(C|pos) =

=

=

= 0.268

P(pos|C)P(C)
P(pos)

P(pos|C)P(C)
P(pos|C)P(C) + P(pos|notC)(1 − P(C))

0.96 ∗ 0.015
0.96 ∗ 0.015 + 0.04 ∗ 0.985



Bayesian models
Learn the joint distribution .

Assumes that the data is Gaussian distributed (!)

With every input  you get , hence a mean and standard deviation for  (blue)

For every desired output  you get , hence you can sample new points  (red)

Easily updatable with new data using Bayes' rule ('turning the crank')

Previous posterior  becomes new prior 

P(x, y) = P(x|y)P(y)

x P(y|x) y

y P(x|y) x

P(y|x) P(y)



Generative models
The joint distribution represents the training data for a particular output (e.g. a class)

You can sample a new point  with high predicted likelihood : that new point will be very

similar to the training points

Generate new (likely) points according to the same distribution: generative model

Generate examples that are fake but corresponding to a desired output

Generative neural networks (e.g. GANs) can do this very accurately for text, images, ...

x P(x, c)



Naive Bayes
Predict the probability that a point belongs to a certain class, using Bayes' Theorem

Problem: since  is a vector, computing  can be very complex

Naively assume that all features are conditionally independent from each other, in which case:

Very fast: only needs to extract statistics from each feature.

P(c|x) =
P(x|c)P(c)

P(x)

x P(x|c)

P(x|c) = P(x1|c) × P(x2|c)×. . . ×P(xn|c)



On categorical data

What's the probability that your friend will play golf if the weather is sunny?



On numeric data

We need to fit a distribution (e.g. Gaussian) over the data points

GaussianNB: Computes mean  and standard deviation  of the feature values per class: 

We can now make predictions using Bayes' theorem: 

μc σc

p(x = v ∣ c) = e
−1

√2πσ2
c

(v−μc)2

2σ2
c

p(c ∣ x) =
p(x∣c) p(c)

p(x)



What do the predictions of Gaussian Naive Bayes look like?



Other Naive Bayes classifiers:

BernoulliNB

Assumes binary data

Feature statistics: Number of non-zero entries per class

MultinomialNB

Assumes count data

Feature statistics: Average value per class

Mostly used for text classification (bag-of-words data)



Bayesian Networks
What if we know that some variables are not independent?

A Bayesian Network is a directed acyclic graph representing variables as nodes and conditional

dependencies as edges.

If an edge  connects random variables A and B, then  is a factor in the joint

probability distribution. We must know  for all values of  and 

The graph structure can be designed manually or learned (hard!)

(A,B) P(B|A)
P(B|A) B A



Gaussian processes
Model the data as a Gaussian distribution, conditioned on the training points



Probabilistic interpretation of regression
Linear regression (recap):

For one input feature:

We can solve this via linear algebra (closed form solution): 

 is our data matrix with a  column to represent the bias :

y = f(xi) = xiw + b

y = w1 ⋅ x1 + b ⋅ 1

w∗ = (XTX)−1XTY

w = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, y)) 

X x0 = 1 b

X =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

x⊤
1

 x⊤
2

 ⋮

 x⊤
N

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢
⎣

1 x1

 1 x2

 ⋮ ⋮
 1 xN

⎤
⎥ ⎥ ⎥ ⎥
⎦



Example: Olympic marathon data

We learned: y = w1x + w0 = −0.013x + 28.895



Polynomial regression (recap)
We can fit a 2nd degree polynomial by using a basis expansion (adding more basis functions):

Φ = [1 x x2]



Kernelized regression (recap)
We can also kernelize the model and learn a dual coefficient per data point



Probabilistic interpretation
These models do not give us any indication of the (un)certainty of the predictions

Assume that the data is inherently uncertain. This can be modeled explictly by introducing a 

, , known as noise.

Assume that the noise is distributed according to a Gaussian distribution with zero mean and

variance .

That means that  is now a Gaussian distribution with mean  and variance 

slack

variable ϵi
yi = w1xi + w0 + ϵi.

σ2

ϵi ∼ N (0,σ2)

y(x) wx σ2

y = N (wx,σ2)

http://en.wikipedia.org/wiki/Slack_variable


We have an uncertainty predictions, but it is the same for all predictions

You would expect to be more certain nearby your training points



How to learn probabilities?
Maximum Likelihood Estimation (MLE): Maximize 

Corresponds to optimizing , using (log) likelihood as the loss function

Every prediction has a mean defined by  and Gaussian noise

P(X|w)
w

w

P(X|w) =
n

∏
i=0

P(yi|xi; w) =
n

∏
i=0

N (wx,σ2I)



Maximum A Posteriori estimation (MAP): Maximize the posterior 

This can be done using Bayes' rule after we choose a (Gaussian) prior :

Bayesian approach: model the prediction  directly

Marginalize  out: consider all possible models (some are more likely)

If prior  is Gaussian, then  is also Gaussian!

A multivariate Gaussian with mean  and covariance matrix 

P(w|X)
P(w)

P(w|X) =
P(X|w)P(w)

P(X)

P(y|xtest,X)
w

P(w) P(y|xtest, X)
μ Σ

P(y|xtest, X) = ∫
w

P(y|xtest, w)P(w|X)dw = N (μ, Σ)



Gaussian prior 
In the Bayesian approach, we assume a prior (Gaussian) distribution for the parameters, :

With zero mean ( =0) and covariance matrix . For 2D: 

I.e,  is drawn from a Gaussian density with variance 

P(w)
w ∼ N (0,αI)

μ αI αI = [
α 0
0 α

]

wi α

wi ∼ N (0,α)



Sampling from the prior (weight space)
We can sample from the prior distribution to see what form we are imposing on the functions a priori
(before seeing any data).

Draw  (left) independently from a Gaussian density 

Use any normally distributed sampling technique, e.g. Box-Mueller transform

Every sample yields a polynomial function  (right): 

For example, with  being a polynomial:

w w ∼ N (0,αI)

f(x) f(x) = wϕ(x).
ϕ(x)



Learning Gaussian distributions

We assume that our data is Gaussian distributed: 

Example with learned mean  and covariance 

The blue curve is the predicted 

P(y|xtest, X) = N (μ, Σ)

[m,m] [
α β

β α
]

P(y|xtest, X)



Understanding covariances
If two variables  covariate strongly, knowing about  tells us a lot about 

If covariance is 0, knowing  tells us nothing about  (the conditional and marginal distributions

are the same)

For covariance matrix :

xi x1 x2

x1 x2

[
1 β

β 1
]



Sampling from higher-dimensional distributions
Instead of sampling  and then multiplying by , we can also generate examples of  directly.

 with  values can be sampled from an -dimensional Gaussian distribution with zero mean and

covariance matrix :

 is a stochastic process: series of normally distributed variables (interpolated in the plot)

w Φ f(x)
f n n

K = αΦΦ⊤

f

f ∼ N (0, K)



Repeat for 40 dimensions, with  the polynomial transform:Φ

More examples of covariances

https://pymc3-testing.readthedocs.io/en/rtd-docs/notebooks/GP-covariances.html


Noisy functions

We normally add Gaussian noise to obtain our observations:

y = f + ϵ



Gaussian Process
Usually, we want our functions to be smooth: if two points are similar/nearby, the predictions should

be similar.

Hence, we need a similarity measure (a kernel)

In a Gaussian process we can do this by specifying the covariance function directly (not as 

)

The covariance matrix is simply the kernel matrix: 

The RBF (Gaussian) covariance function (or kernel) is specified by

where  is the squared distance between the two input vectors

and the length parameter  controls the smoothness of the function and  the vertical variation.

K = αΦΦ⊤

f ∼ N (0, K)

k(x, x′) = α exp(− ).
∥x − x′∥2

2ℓ2

∥x − x′∥2

∥∥x − x′∥∥
2 = (x − x′)⊤(x − x′)

l α



Now the influence of a point decreases smoothly but exponentially

These are our priors , with mean 0

We now want to condition it on our training data: 

P(y) = N (0, K)
P(y|xtest, X) = N (μ, Σ)



Computing the posterior 

Assuming that  is a Gaussian density with a covariance given by kernel matrix , the model
likelihood becomes:

Hence, the negative log likelihood (the objective function) is given by:

The model parameters (e.g. noise variance ) and the kernel parameters (e.g. lengthscale,
variance) can be embedded in the covariance function and learned from data.

Good news: This loss function can be optimized using linear algebra (Cholesky Decomposition)

Bad news: This is cubic in the number of data points AND the number of features: 

P(y|X)

P(X) K

P(y|X) = = exp(− y⊤(K + σ2I)
−1

y)
P(y) P(X ∣ y)

P(X)
1

(2π) |K|
n

2
1
2

1
2

E(θ) = log |K| + y⊤(K + σ2I)
−1

y
1
2

1
2

σ2

O(n3d3)



Making predictions
The model makes predictions for  that are unaffected by future values of .
If we think of  as test points, we can still write down a joint probability density over the training
observations,  and the test observations, .

This joint probability density will be Gaussian, with a covariance matrix given by our kernel function, 
.

where  is the kernel matrix computed between all the training points,
 is the kernel matrix computed between the training points and the test points,

 is the kernel matrix computed between all the tests points and themselves.

f f
∗

f
∗

f f
∗

k(xi, xj)

[
f

f ∗ ] ∼ N (0, [
K K∗

K⊤
∗ K∗,∗

])

K
K∗
K∗,∗



Conditional Density 
Finally, we need to define conditional distributions to answer particular questions of interest

We will need the conditional density for making predictions.

with a mean given by 

and a covariance given by 

P(y|xtest, X)

f
∗|y ∼ N (μf , Cf)

μf = K⊤
∗ [K + σ2I]

−1
y

Cf = K∗,∗ − K⊤
∗ [K + σ2I]

−1
K∗.





Remember that our prediction is the sum of the mean and the variance: 

The mean is the same as the one computed with kernel ridge (if given the same kernel and

hyperparameters)

The Gaussian process learned the covariance and the hyperparameters

P(y|xtest, X) = N (μ, Σ)



The values on the diagonal of the covariance matrix give us the variance, so we can simply plot the mean
and 95% confidence interval



Gaussian Processes in practice (with GPy)
GPyRegression

Generate a kernel first

State the dimensionality of your input data

Variance and lengthscale are optional, default = 1

Other kernels:

Build model:

kernel = GPy.kern.RBF(input_dim=1, variance=1., 
lengthscale=1.) 

GPy.kern.BasisFuncKernel? 

m = GPy.models.GPRegression(X,Y,kernel) 



Matern  is a generalized RBF kernel that can scale between RBF and Exponential



Build the untrained GP. The shaded region corresponds to ~95% confidence intervals (i.e. +/- 2 standard
deviation)



Train the model (optimize the parameters): maximize the likelihood of the data.
Best to optimize with a few restarts: the optimizer may converges to the high-noise solution. The optimizer
is then restarted with a few random initialization of the parameter values.



You can also show results in 2D



We can plot 2D slices using the fixed_inputs  argument to the plot function.
fixed_inputs  is a list of tuples containing which of the inputs to fix, and to which value.



Gaussian Processes with scikit-learn

GaussianProcessRegressor

Hyperparameters:

kernel : kernel specifying the covariance function of the GP

Default: "1.0 * RBF(1.0)"

Typically leave at default. Will be optimized during fitting

alpha : regularization parameter

Tikhonov regularization of covariance between the training points.

Adds a (small) value to diagonal of the kernel matrix during fitting.

Larger values:

correspond to increased noise level in the observations

also reduce potential numerical issues during fitting

Default: 1e-10

n_restarts_optimizer : number of restarts of the optimizer

Default: 0. Best to do at least a few iterations.

Optimizer finds kernel parameters maximizing log-marginal likelihood

Retrieve predictions and confidence interval after fitting:

y_pred, sigma = gp.predict(x, return_std=True) 



Example



Example with noisy data



Gaussian processes: Conclusions
Advantages:

The prediction is probabilistic (Gaussian) so that one can compute empirical confidence intervals.

The prediction interpolates the observations (at least for regular kernels).

Versatile: different kernels can be specified.

Disadvantages:

They are typically not sparse, i.e., they use the whole sample/feature information to perform the

prediction.

Sparse GPs also exist: they remember only the most important points

They lose efficiency in high dimensional spaces – namely when the number of features exceeds a

few dozens.



Gaussian processes and neural networks
You can prove that a Gaussian process is equivalent to a neural network with one layer and an

infinite number of nodes

You can build deep Gaussian Processes by constructing layers of GPs



Bayesian optimization
The incremental updates you can do with Bayesian models allow a more effective way to optimize

functions

E.g. to optimize the hyperparameter settings of a machine learning algorithm/pipeline

After a number of random search iterations we know more about the performance of

hyperparameter settings on the given dataset

We can use this data to train a model, and predict which other hyperparameter values might be

useful

More generally, this is called model-based optimization

This model is called a surrogate model

This is often a probabilistic (e.g. Bayesian) model that predicts confidence intervals for all

hyperparameter settings

We use the predictions of this model to choose the next point to evaluate

With every new evaluation, we update the surrogate model and repeat



Example (see �gure):
Consider only 1 continuous hyperparameter (X-axis)

You can also do this for many more hyperparameters

Y-axis shows cross-validation performance

Evaluate a number of random hyperparameter settings (black dots)

Sometimes an initialization design is used

Train a model, and predict the expected performance of other (unseen) hyperparameter values

Mean value (black line) and distribution (blue band)

An acquisition function (green line) trades off maximal expected performace and maximal

uncertainty

Exploitation vs exploration

Optimal value of the asquisition function is the next hyperparameter setting to be evaluated

Repeat a fixed number of times, or until time budget runs out



Shahriari et al. Taking the Human Out of the Loop: A Review of Bayesian Optimization



In 2 dimensions:



Surrogate models
Surrogate model can be anything as long as it can do regression and is probabilistic

Gaussian Processes are commonly used

Smooth, good extrapolation, but don't scale well to many hyperparameters (cubic)

Sparse GPs: select ‘inducing pointsʼ that minimize info loss, more scalable

Multi-task GPs: transfer surrogate models from other tasks

Random Forests

A lot more scalable, but don't extrapolate well

Often an interpolation between predictions is used instead of the raw (step-wise)

predictions

Bayesian Neural Networks:

Expensive, sensitive to hyperparameters



Acquisition Functions
When we have trained the surrogate model, we ask it to predict a number of samples

Can be simply random sampling

Better: Thompson sampling

fit a Gaussian distribution (a mixture of Gaussians) over the sampled points

sample new points close to the means of the fitted Gaussians

Typical acquisition function: Expected Improvement

Models the predicted performance as a Gaussian distribution with the predicted mean and

standard deviation

Computes the expected performance improvement over the previous best configuration 

:

Computing the expected performance requires an integration over the posterior

distribution, but has a .

X+

EI(X) := E [max{0, f(X+) − ft+1(X)}]

closed form solution

http://ash-aldujaili.github.io/blog/2018/02/01/ei/


Bayesian Optimization: conclusions
More efficient way to optimize hyperparameters

More similar to what humans would do

Harder to parallellize

Choice of surrogate model depends on your search space

Very active research area

For very high-dimensional search spaces, random forests are popular


