Lecture 8. Neural Networks

How to train your neurons

Joaquin Vanschoren

Overview

- Neural architectures
- Training neural nets
 - Forward pass: Tensor operations
 - Backward pass: Backpropagation
- Neural network design:
 - Activation functions
 - Weight initialization
 - Optimizers
- Neural networks in practice
- Model selection
 - Early stopping
 - Memorization capacity and information bottleneck
 - L1/L2 regularization
 - Dropout
 - Batch normalization

Linear models as a building block

- Logistic regression, drawn in a different, neuro-inspired, way
 - Linear model: inner product (z) of input vector ${\bf x}$ and weight vector ${\bf w}$, plus bias w_0
 - Logistic (or sigmoid) function maps the output to a probability in [0,1]
 - Uses log loss (cross-entropy) and gradient descent to learn the weights

$$\hat{y}(\mathbf{x}) = \operatorname{sigmoid}(z) = \operatorname{sigmoid}(w_0 + \mathbf{w}\mathbf{x}) = \operatorname{sigmoid}(w_0 + w_1 * x_1 + w_2 * x_2 + \ldots + w_p * x_p)$$

Basic Architecture

- Add one (or more) *hidden* layers h with k nodes (or units, cells, neurons)
 - Every 'neuron' is a tiny function, the network is an arbitrarily complex function
 - lacksquare Weights $w_{i,j}$ between node i and node j form a weight matrix $\mathbf{W}^{(l)}$ per layer l
- Every neuron weights the inputs x and passes it through a non-linear activation function
 - Activation functions (f,g) can be different per layer, output ${\bf a}$ is called activation

$$oldsymbol{h}(\mathbf{x}) = \mathbf{a} = f(\mathbf{z}) = f(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{w}_0^{(1)}) \qquad oldsymbol{o}(\mathbf{x}) = g(\mathbf{W}^{(2)}\mathbf{a} + \mathbf{w}_0^{(2)})$$

More layers

- Add more layers, and more nodes per layer, to make the model more complex
 - For simplicity, we don't draw the biases (but remember that they are there)
- In dense (fully-connected) layers, every previous layer node is connected to all nodes
- The output layer can also have multiple nodes (e.g. 1 per class in multi-class classification)

Why layers?

- Each layer acts as a filter and learns a new representation of the data
 - Subsequent layers can learn iterative refinements
 - Easier that learning a complex relationship in one go
- Example: for image input, each layer yields new (filtered) images
 - ullet Can learn multiple mappings at once: weight *tensor* W yields activation tensor A
 - From low-level patterns (edges, end-points, ...) to combinations thereof
 - Each neuron 'lights up' if certain patterns occur in the input

Other architectures

- There exist MANY types of networks for many different tasks
- Convolutional nets for image data, Recurrent nets for sequential data,...
- Also used to learn representations (embeddings), generate new images, text,...

Training Neural Nets

- Design the architecture, choose activation functions (e.g. sigmoids)
- Choose a way to initialize the weights (e.g. random initialization)
- Choose a loss function (e.g. log loss) to measure how well the model fits training data
- Choose an optimizer (typically an SGD variant) to update the weights

Mini-batch Stochastic Gradient Descent (recap)

- 1. Draw a batch of $batch_size$ training data ${f X}$ and ${f y}$
- 2. Forward pass: pass ${f X}$ though the network to yield predictions ${f \hat{y}}$
- 3. Compute the loss \mathcal{L} (mismatch between $\hat{\mathbf{y}}$ and \mathbf{y})
- 4. Backward pass: Compute the gradient of the loss with regard to every weight
 - Backpropagate the gradients through all the layers

5. Update
$$W$$
: $W_{(i+1)} = W_{(i)} - rac{\partial L(x,W_{(i)})}{\partial W} * \eta$

Repeat until n passes (epochs) are made through the entire training set

Forward pass

- We can naturally represent the data as *tensors*
 - Numerical n-dimensional array (with n axes)
 - 2D tensor: matrix (samples, features)
 - 3D tensor: time series (samples, timesteps, features)
 - 4D tensor: color images (samples, height, width, channels)
 - 5D tensor: video (samples, frames, height, width, channels)

Tensor operations

- The operations that the network performs on the data can be reduced to a *series of tensor operations*
 - These are also much easier to run on GPUs
- A dense layer with sigmoid activation, input tensor \mathbf{X} , weight tensor \mathbf{W} , bias \mathbf{b} :

```
y = sigmoid(np.dot(X, W) + b)
```

• Tensor dot product for 2D inputs (a samples, b features, c hidden nodes)

Element-wise operations

• Activation functions and addition are element-wise operations:

```
def sigmoid(x):
    return 1/(1 + np.exp(-x))

def add(x, y):
    return x + y
```

• Note: if y has a lower dimension than x, it will be *broadcasted*: axes are added to match the dimensionality, and y is repeated along the new axes

Backward pass (backpropagation)

• For last layer, compute gradient of the loss function ${\cal L}$ w.r.t all weights of layer l

$$abla \mathcal{L} = rac{\partial \mathcal{L}}{\partial W^{(l)}} = egin{bmatrix} rac{\partial \mathcal{L}}{\partial w_{0,0}} & \cdots & rac{\partial \mathcal{L}}{\partial w_{0,l}} \ dots & \ddots & dots \ rac{\partial \mathcal{L}}{\partial w_{k,0}} & \cdots & rac{\partial \mathcal{L}}{\partial w_{k,l}} \end{bmatrix}$$

- Sum up the gradients for all \mathbf{x}_j in minibatch: $\sum_j \frac{\partial \mathcal{L}(\mathbf{x}_j, y_j)}{\partial W^{(l)}}$
- Update all weights in a layer at once (with learning rate η): $W_{(i+1)}^{(l)} = W_{(i)}^{(l)} \eta \sum_j rac{\partial \mathcal{L}(\mathbf{x}_j, y_j)}{\partial W_{(i)}^{(l)}}$
- Repeat for next layer, iterating backwards (most efficient, avoids redundant calculations)

Backpropagation (example)

• Imagine feeding a single data point, output is

$$\hat{y} = g(z) = g(w_0 + w_1 * a_1 + w_2 * a_2 + \ldots + w_p * a_p)$$

- Decrease loss by updating weights:
 - lacksquare Update the weights of last layer to maximize improvement: $w_{i,(new)}=w_i-rac{\partial \mathcal{L}}{\partial w_i}*\eta$
 - lacktriangledown To compute gradient $rac{\partial \mathcal{L}}{\partial w_i}$ we need the chain rule: f(g(x)) = f'(g(x)) * g'(x)

$$rac{\partial \mathcal{L}}{\partial w_i} = rac{\partial \mathcal{L}}{\partial g} rac{\partial g}{\partial z_0} rac{\partial z_0}{\partial w_i}$$

• E.g., with $\mathcal{L}=rac{1}{2}(y-\hat{y})^2$ and sigmoid $\sigma:rac{\partial \mathcal{L}}{\partial w_i}=(\pmb{y}-\hat{\pmb{y}})*\sigma'(z_0)*a_i$

Backpropagation (2)

- Another way to decrease the loss $\mathcal L$ is to update the activations a_i
 - lacktriangledown To update $a_i=f(z_i)$, we need to update the weights of the previous layer
 - We want to nudge a_i in the right direction by updating $w_{i,j}$:

$$rac{\partial \mathcal{L}}{\partial w_{i,j}} = rac{\partial \mathcal{L}}{\partial a_i} rac{\partial a_i}{\partial z_i} rac{\partial z_i}{\partial w_{i,j}} = \left(rac{\partial \mathcal{L}}{\partial g} rac{\partial g}{\partial z_0} rac{\partial z_{
m o}}{\partial a_i}
ight) rac{\partial a_i}{\partial z_i} rac{\partial z_i}{\partial w_{i,j}}$$

lacksquare We know $rac{\partial \mathcal{L}}{\partial g}$ and $rac{\partial g}{\partial z_0}$ from the previous step, $rac{\partial z_0}{\partial a_i}=w_i$, $rac{\partial a_i}{\partial z_i}=f'$ and $rac{\partial z_i}{\partial w_{i,j}}=x_j$

Backpropagation (3)

- With multiple output nodes, \mathcal{L} is the sum of all per-output (per-class) losses
 - lacktriangledown $\frac{\partial \mathcal{L}}{\partial a_i}$ is sum of the gradients for every output
- Per layer, sum up gradients for every point ${\bf x}$ in the batch: $\sum_j \frac{\partial \mathcal{L}({\bf x}_j,y_j)}{\partial W}$
- ullet Update all weights of every layer l

$$lacksymbol{W}_{(i+1)}^{(l)} = W_{(i)}^{(l)} - \eta \sum_j rac{\partial \mathcal{L}(\mathbf{x}_j, y_j)}{\partial W_{(i)}^{(l)}}$$

- Repeat with a new batch of data until loss converges
- Nice animation of the entire process

Backpropagation (summary)

- The network output a_o is defined by the weights $W^{(o)}$ and biases $\mathbf{b}^{(o)}$ of the output layer, and
- The activations of a hidden layer h_1 with activation function a_{h_1} , weights $W^{(1)}$ and biases ${f b^{(1)}}$:

$$a_o(\mathbf{x}) = a_o(\mathbf{z_0}) = a_o(W^{(o)}a_{h_1}(z_{h_1}) + \mathbf{b}^{(o)}) = a_o(W^{(o)}a_{h_1}(W^{(1)}\mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(o)})$$

- Minimize the loss by SGD. For layer l, compute $\frac{\partial \mathcal{L}(a_o(x))}{\partial W_l}$ and $\frac{\partial \mathcal{L}(a_o(x))}{\partial b_{l,i}}$ using the chain rule
- Decomposes into gradient of layer above, gradient of activation function, gradient of layer input:

$$rac{\partial \mathcal{L}(a_o)}{\partial W^{(1)}} = rac{\partial \mathcal{L}(a_o)}{\partial a_{h_1}} rac{\partial a_{h_1}}{\partial z_{h_1}} rac{\partial z_{h_1}}{\partial W^{(1)}} = \left(rac{\partial \mathcal{L}(a_o)}{\partial a_o} rac{\partial a_o}{\partial z_o} rac{\partial z_o}{\partial a_{h_1}}
ight) rac{\partial a_{h_1}}{\partial z_{h_1}} rac{\partial z_{h_1}}{\partial W^{(1)}}$$

Activation functions for hidden layers

- Sigmoid: $f(z)=rac{1}{1+e^{-z}}$
- Tanh: $f(z) = \frac{2}{1 + e^{-2z}} 1$
 - Activations around 0 are better for gradient descent convergence
- Rectified Linear (ReLU): f(z) = max(0, z)
 - Less smooth, but much faster (note: not differentiable at 0)

• Leaky ReLU:
$$f(z) = \left\{ egin{array}{ll} 0.01z & z < 0 \ z & otherwise \end{array}
ight.$$

Effect of activation functions on the gradient

• During gradient descent, the gradient depends on the activation function a_h :

$$rac{\partial \mathcal{L}(a_o)}{\partial W^{(l)}} = rac{\partial \mathcal{L}(a_o)}{\partial a_{h_l}} rac{\partial a_{h_l}}{\partial z_{h_l}} rac{\partial z_{h_l}}{\partial W^{(l)}}$$

- If derivative of the activation function $rac{\partial a_{h_l}}{\partial z_{h_l}}$ is 0, the weights w_i are not updated
 - Moreover, the gradients of previous layers will be reduced (vanishing gradient)
- sigmoid, tanh: gradient is very small for large inputs: slow updates
- With ReLU, $rac{\partial a_{h_l}}{\partial z_{h_l}}=1$ if z>0, hence better against vanishing gradients
 - Problem: for very negative inputs, the gradient is 0 and may never recover (dying ReLU)
 - Leaky ReLU has a small (0.01) gradient there to allow recovery

ReLU vs Tanh

- What is the effect of using non-smooth activation functions?
 - ReLU produces piecewise-linear boundaries, but allows deeper networks
 - Tanh produces smoother decision boundaries, but is slower

ReLU, acc: 0.84, time: 0.03 sec tanh, acc: 0.84, time: 0.03 sec

Activation functions for output layer

- sigmoid converts output to probability in [0,1]
 - For binary classification
- softmax converts all outputs (aka 'logits') to probabilities that sum up to 1
 - For multi-class classification (*k* classes)
 - ullet Can cause over-confident models. If so, smooth the labels: $y_{smooth}=(1-lpha)y+rac{lpha}{k}$

$$\operatorname{softmax}(\mathbf{x},i) = rac{e^{x_i}}{\sum_{j=1}^k e^{x_j}}$$

• For regression, don't use any activation function, let the model learn the exact target

Weight initialization

- Initializing weights to 0 is bad: all gradients in layer will be identical (symmetry)
- Too small random weights shrink activations to 0 along the layers (vanishing gradient)
- Too large random weights multiply along layers (exploding gradient, zig-zagging)
- Ideal: small random weights + variance of input and output gradients remains the same
 - Glorot/Xavier initialization (for tanh): randomly sample from

$$N(0,\sigma), \sigma = \sqrt{rac{2}{ ext{fan_in} + ext{fan_out}}}$$

- fan_in: number of input units, fan_out: number of output units
- lacksquare He initialization (for ReLU): randomly sample from $N(0,\sigma), \sigma = \sqrt{rac{2}{ ext{fan_in}}}$
- Uniform sampling (instead of $N(0,\sigma)$) for deeper networks (w.r.t. vanishing gradients)

Weight initialization: transfer learning

- Instead of starting from scratch, start from weights previously learned from similar tasks
 - This is, to a big extent, how humans learn so fast
- Transfer learning: learn weights on task T, transfer them to new network
 - Weights can be frozen, or finetuned to the new data
- Only works if the previous task is 'similar' enough
 - Meta-learning: learn a good initialization across many related tasks

Optimizers

SGD with learning rate schedules

- Using a constant learning η rate for weight updates $\mathbf{w}_{(s+1)} = \mathbf{w}_s \eta
 abla \mathcal{L}(\mathbf{w}_s)$ is not ideal
- Learning rate decay/annealing with decay rate k
 - ullet E.g. exponential $(\eta_{s+1}=\eta_s e^{-ks})$, inverse-time $(\eta_{s+1}=rac{\eta_0}{1+ks})$,...
- Cyclical learning rates
 - Change from small to large: hopefully in 'good' region long enough before diverging
 - Warm restarts: aggressive decay + reset to initial learning rate

Momentum

- Imagine a ball rolling downhill: accumulates momentum, doesn't exactly follow steepest descent
 - Reduces oscillation, follows larger (consistent) gradient of the loss surface
- Adds a velocity vector ${\bf v}$ with momentum γ (e.g. 0.9, or increase from $\gamma=0.5$ to $\gamma=0.99$)

$$\mathbf{w}_{(s+1)} = \mathbf{w}_{(s)} + \mathbf{v}_{(s)} \qquad ext{with} \qquad \mathbf{v}_{(s)} = \gamma \mathbf{v}_{(s-1)} - \eta
abla \mathcal{L}(\mathbf{w}_{(s)})$$

- Nesterov momentum: Look where momentum step would bring you, compute gradient there
 - Responds faster (and reduces momentum) when the gradient changes

$$\mathbf{v}_{(s)} = \gamma \mathbf{v}_{(s-1)} - \eta
abla \mathcal{L}(\mathbf{w}_{(s)} + \gamma \mathbf{v}_{(s-1)})$$

Momentum in practice

Adaptive gradients

- 'Correct' the learning rate for each w_i based on specific local conditions (layer depth, fan-in,...)
- Adagrad: scale η according to squared sum of previous gradients $G_{i,(s)} = \sum_{t=1}^s \mathcal{L}(w_{i,(t)})^2$
 - ullet Update rule for w_i . Usually $\epsilon=10^{-7}$ (avoids division by 0), $\eta=0.001$.

$$w_{i,(s+1)} = w_{i,(s)} - rac{\eta}{\sqrt{G_{i,(s)} + \epsilon}}
abla \mathcal{L}(w_{i,(s)})$$

- RMSProp: use *moving average* of squared gradients $m_{i,(s)} = \gamma m_{i,(s-1)} + (1-\gamma)
 abla \mathcal{L}(w_{i,(s)})^2$
 - Avoids that gradients dwindle to 0 as $G_{i,(s)}$ grows. Usually $\gamma=0.9, \eta=0.001$

$$w_{i,(s+1)} = w_{i,(s)} - rac{\eta}{\sqrt{m_{i,(s)} + \epsilon}}
abla \mathcal{L}(w_{i,(s)})$$

Adam (Adaptive moment estimation)

- Adam: RMSProp + momentum. Adds moving average for gradients as well (γ_2 = momentum):
 - Adds a bias correction to avoid small initial gradients: $\hat{m}_{i,(s)} = \frac{m_{i,(s)}}{1-\gamma}$ and $\hat{g}_{i,(s)} = \frac{g_{i,(s)}}{1-\gamma_2}$ $g_{i,(s)} = \gamma_2 g_{i,(s-1)} + (1-\gamma_2) \nabla \mathcal{L}(w_{i,(s)})$ $w_{i,(s+1)} = w_{i,(s)} \frac{\eta}{\sqrt{\hat{m}_{i,(s)} + \epsilon}} \hat{g}_{i,(s)}$
- Adamax: Idem, but use max() instead of moving average: $u_{i,(s)}=max(\gamma u_{i,(s-1)},|\mathcal{L}(w_{i,(s)})|)$ $w_{i,(s+1)}=w_{i,(s)}-rac{\eta}{u_{i,(s)}}\hat{g}_{i,(s)}$

SGD Optimizer Zoo

• RMSProp often works well, but do try alternatives. For even more optimizers, see here.

Neural networks in practice

- There are many practical courses on training neural nets. E.g.:
 - With TensorFlow: https://www.tensorflow.org/resources/learn-ml
 - With PyTorch: fast.ai course, https://pytorch.org/tutorials/
- Here, we'll use Keras, a general API for building neural networks
 - Default API for TensorFlow, also has backends for CNTK, Theano
- Focus on key design decisions, evaluation, and regularization
- Running example: Fashion-MNIST
 - 28x28 pixel images of 10 classes of fashion items

Building the network

- We first build a simple sequential model (no branches)
- Input layer ('input_shape'): a flat vector of 28*28=784 nodes
 - We'll see how to properly deal with images later
- Two dense hidden layers: 512 nodes each, ReLU activation
 - Glorot weight initialization is applied by default
- Output layer: 10 nodes (for 10 classes) and softmax activation

```
network = models.Sequential()
network.add(layers.Dense(512, activation='relu',
kernel_initializer='he_normal', input_shape=(28 * 28,)))
network.add(layers.Dense(512, activation='relu',
kernel_initializer='he_normal'))
network.add(layers.Dense(10, activation='softmax'))
```

Model summary

• Lots of parameters (weights and biases) to learn!

■ hidden layer 1 : (28 28 + 1) 512 = 401920

■ hidden layer 2 : (512 + 1) * 512 = 262656

output layer: (512 + 1) * 10 = 5130

network.summary()

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 512)	401920
dense_1 (Dense)	(None, 512)	262656
dense_2 (Dense)	(None, 10)	5130

Total params: 669,706 Trainable params: 669,706 Non-trainable params: 0

Choosing loss, optimizer, metrics

Loss function

- Cross-entropy (log loss) for multi-class classification (y_{true} is one-hot encoded)
- Use binary crossentropy for binary problems (single output node)
- Use sparse categorical crossentropy if y_{true} is label-encoded (1,2,3,...)

Optimizer

Any of the optimizers we discussed before. RMSprop usually works well.

Metrics

To monitor performance during training and testing, e.g. accuracy

Preprocessing: Normalization, Reshaping, Encoding

- Always normalize (standardize or min-max) the inputs. Mean should be close to 0.
 - Avoid that some inputs overpower others
 - Speed up convergence
 - \circ Gradients of activation functions $\frac{\partial a_h}{\partial z_h}$ are (near) 0 for large inputs
 - o If some gradients become much larger than others, SGD will start zig-zagging
- Reshape the data to fit the shape of the input layer, e.g. (n, 28*28) or (n, 28,28)
 - Tensor with instances in first dimension, rest must match the input layer
- In multi-class classification, every class is an output node, so one-hot-encode the labels
 - e.g. class '4' becomes [0,0,0,0,1,0,0,0,0,0]

```
X = X.astype('float32') / 255
X = X.reshape((60000, 28 * 28))
y = to_categorical(y)
```

Choosing training hyperparameters

- Number of epochs: enough to allow convergence
 - Too much: model starts overfitting (or just wastes time)
- Batch size: small batches (e.g. 32, 64,... samples) often preferred
 - 'Noisy' training data makes overfitting less likely
 - Larger batches generalize less well ('generalization gap')
 - Requires less memory (especially in GPUs)
 - Large batches do speed up training, may converge in fewer epochs
- Batch size interacts with learning rate
 - Instead of shrinking the learning rate you can increase batch size

```
history = network.fit(X_train, y_train, epochs=3, batch_size=32);
```

Predictions and evaluations

We can now call predict to generate predictions, and evaluate the trained model on the entire test set

```
network.predict(X_test)
test_loss, test_acc = network.evaluate(X_test, y_test)
```

```
[0.0240177 0.0001167 0.4472437 0.0056629 0.057807 0.000094 0.4632739 0.0000267 0.0017463 0.0000112]
```


True label: [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]

Test accuracy: 0.8636000156402588

Model selection

- How many epochs do we need for training?
- Train the neural net and track the loss after every iteration on a validation set
 - You can add a callback to the fit version to get info on every epoch
- Best model after a few epochs, then starts overfitting

Early stopping

- Stop training when the validation loss (or validation accuracy) no longer improves
- Loss can be bumpy: use a moving average or wait for k steps without improvement

```
earlystop = callbacks.EarlyStopping(monitor='val_loss', patience=3)
model.fit(x_train, y_train, epochs=25, batch_size=512, callbacks=
[earlystop])
```


Regularization and memorization capacity

- The number of learnable parameters is called the model capacity
- A model with more parameters has a higher memorization capacity
 - Too high capacity causes overfitting, too low causes underfitting
 - In the extreme, the training set can be 'memorized' in the weights
- Smaller models are forced it to learn a compressed representation that generalizes better
 - Find the sweet spot: e.g. start with few parameters, increase until overfitting stars.
- Example: 256 nodes in first layer, 32 nodes in second layer, similar performance

Information bottleneck

- If a layer is too narrow, it will lose information that can never be recovered by subsequent layers
- Information bottleneck theory defines a bound on the capacity of the network
- Imagine that you need to learn 10 outputs (e.g. classes) and your hidden layer has 2 nodes
 - This is like trying to learn 10 hyperplanes from a 2-dimensional representation
- Example: bottleneck of 2 nodes, no overfitting, much higher training loss

Weight regularization (weight decay)

- As we did many times before, we can also add weight regularization to our loss function
- L1 regularization: leads to sparse networks with many weights that are 0
- L2 regularization: leads to many very small weights

```
network = models.Sequential()
network.add(layers.Dense(256, activation='relu',
kernel_regularizer=regularizers.12(0.001), input_shape=(28 * 28,)))
network.add(layers.Dense(128, activation='relu',
kernel_regularizer=regularizers.12(0.001)))
```


Dropout

- Every iteration, randomly set a number of activations a_i to 0
- Dropout rate: fraction of the outputs that are zeroed-out (e.g. 0.1 0.5)
- Idea: break up accidental non-significant learned patterns
- At test time, nothing is dropped out, but the output values are scaled down by the dropout rate
 - Balances out that more units are active than during training

Dropout layers

• Dropout is usually implemented as a special layer

```
network = models.Sequential()
network.add(layers.Dense(256, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dropout(0.5))
network.add(layers.Dense(32, activation='relu'))
network.add(layers.Dropout(0.5))
network.add(layers.Dense(10, activation='softmax'))
```


- We've seen that scaling the input is important, but what if layer activations become very large?
 - Same problems, starting deeper in the network
- Batch normalization: normalize the activations of the previous layer within each batch
 - Within a batch, set the mean activation close to 0 and the standard deviation close to 1
 - Across badges, use exponential moving average of batch-wise mean and variance
 - Allows deeper networks less prone to vanishing or exploding gradients

```
network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))
network.add(layers.Dense(256, activation='relu'))
network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))
network.add(layers.Dense(64, activation='relu'))
network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))
network.add(layers.Dense(32, activation='relu'))
network.add(layers.BatchNormalization())
network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))
```


Tuning multiple hyperparameters

- You can wrap Keras models as scikit-learn models and use any tuning technique
- Keras also has built-in RandomSearch (and HyperBand and BayesianOptimization see later)

```
def make_model(hp):
    m.add(Dense(units=hp.Int('units', min_value=32, max_value=512,
    step=32)))
    m.compile(optimizer=Adam(hp.Choice('learning rate', [1e-2, 1e-3,
    1e-4])))
    return model
```

```
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
clf = KerasClassifier(make_model)
grid = GridSearchCV(clf, param_grid=param_grid, cv=3)

from kerastuner.tuners import RandomSearch
tuner = keras.RandomSearch(build_model, max_trials=5)
```

Summary

- Neural architectures
- Training neural nets
 - Forward pass: Tensor operations
 - Backward pass: Backpropagation
- Neural network design:
 - Activation functions
 - Weight initialization
 - Optimizers
- Neural networks in practice
- Model selection
 - Early stopping
 - Memorization capacity and information bottleneck
 - L1/L2 regularization
 - Dropout
 - Batch normalization