Lecture 8. Neural Networks

How to train your neurons

Joaquin Vanschoren



Overview

Neural architectures

Training neural nets
= Forward pass: Tensor operations
» Backward pass: Backpropagation

Neural network design:
= Activation functions
= Weight initialization
= Optimizers

Neural networks in practice
Model selection

= Early stopping

= Memorization capacity and information bottleneck
» L1/L2 regularization

= Dropout

= Batch normalization



Linear models as a building block

o Logistic regression, drawn in a different, neuro-inspired, way
» Linear model: inner product (2) of input vector x and weight vector w, plus bias wy
» Logistic (or sigmoid) function maps the output to a probability in [0,1]
» Uses log loss (cross-entropy) and gradient descent to learn the weights

7 (x) = sigmoid(z) = sigmoid(wy + wx) = sigmoid(wy + wy * &1 + wy * To+. .. +w, * x,)

input




Basic Architecture

« Add one (or more) hidden layers h with k nodes (or units, cells, neurons)
= Every 'neuron' is a tiny function, the network is an arbitrarily complex function
= Weights w; j between node ¢ and node j form a weight matrix w per layer [

e Every neuron weights the inputs x and passes it through a non-linear activation function
= Activation functions (f, g) can be different per layer, output a is called activation

h(x) =a=f(z) = (Wx+w()  o(x) = g(WZa+w()

9 weights, 4 biases




More layers

o Add more layers, and more nodes per layer, to make the model more complex
= For simplicity, we don't draw the biases (but remember that they are there)
* In dense (fully-connected) layers, every previous layer node is connected to all nodes
e The output layer can also have multiple nodes (e.g. 1 per class in multi-class classification)
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Why layers?

e Each layer acts as a filter and learns a new representation of the data
» Subsequent layers can learn iterative refinements
» Easier that learning a complex relationship in one go
o Example: for image input, each layer yields new (filtered) images
= Can learn multiple mappings at once: weight tensor W yields activation tensor A
= From low-level patterns (edges, end-points, ...) to combinations thereof
» Each neuron 'lights up' if certain patterns occur in the input
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Other architectures

e There exist MANY types of networks for many different tasks
e Convolutional nets for image data, Recurrent nets for sequential data, ...
e Also used to learn representations (embeddings), generate new images, text, ...

Deep Feed Forward (DFF)  Recurrent Neural Network (RNN)  Deep Convolutional Network (DCN)
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Training Neural Nets

Design the architecture, choose activation functions (e.g. sigmoids)

Choose a way to initialize the weights (e.g. random initialization)

Choose a loss function (e.g. log loss) to measure how well the model fits training data

Choose an optimizer (typically an SGD variant) to update the weights
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Mini-batch Stochastic Gradient Descent (recap)

1. Draw a batch of batch_size training data X and y

2. Forward pass : pass X though the network to yield predictions ¥

3. Compute the loss £ (mismatch between y and y)

4. Backward pass : Compute the gradient of the loss with regard to every weight
e Backpropagate the gradients through all the layers

5.Update W: W; 1) = W) — % *

Repeat until n passes (epochs) are made through the entire training set




Forward pass

» We can naturally represent the data as tensors

Features {

= Numerical n-dimensional array (with n axes)

2D tensor: matrix (samples, features)

3D tensor: time series (samples, timesteps, features)

4D tensor: color images (samples, height, width, channels)

5D tensor: video (samples, frames, height, width, channels)
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Tensor operations

e The operations that the network performs on the data can be reduced to a series of tensor
operations
» These are also much easier to run on GPUs
« A dense layer with sigmoid activation, input tensor X, weight tensor W, bias b:

y = sigmoid(np.dot(X, W) + b)
» Tensor dot product for 2D inputs (a samples, b features, ¢ hidden nodes)
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Element-wise operations

o Activation functions and addition are element-wise operations:

def sigmoid(x):
return 1/(1 + np.exp(-x))

def add(x, y):
return x + y

» Note: if y has a lower dimension than X, it will be broadcasted: axes are added to match the
dimensionality, and y is repeated along the new axes

>>> np.array([[1,2],[3,4]]) + np.array([10,20])
array([[1l1l, 227,
[13, 2411])



Backward pass (backpropagation)

For last layer, compute gradient of the loss function £ w.r.t all weights of layer [
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Update all weights in a layer at once (with learning rate 7): W((illl) = W(E.l)) - Zj

Repeat for next layer, iterating backwards (most efficient, avoids redundant calculations)
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Backpropagation (example)

e Imagine feeding a single data point, output is
g = g(z) = g(wo + w1 * a1 + w2 * az+. .. +wp * ap)
e Decrease loss by updating weights:

o

= Update the weights of last layer to maximize improvement: w; (pew) = Wi — 5.~ * 1

= To compute gradient

e Eg., withl =

gﬁ_ we need the chain rule: f(g(z)) = f'(g(x)) * ¢'(x)
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Backpropagation (2)

» Another way to decrease the loss L is to update the activations a;
= To update a; = f(z;), we need to update the weights of the previous layer
= We want to nudge a; in the right direction by updating w;_;:
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Backpropagation (3)

o With multiple output nodes, L is the sum of all per-output (per-class) losses

oL
Bai

Per layer, sum up gradients for every point x in the batch: Zj

is sum of the gradients for every output
OL(x;,y;)
ow

Update all weights of every layer [

O _ )
" Wy = Wey =12 70

Repeat with a new batch of data until loss converges
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Nice animation of the entire process
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https://youtu.be/Ilg3gGewQ5U?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&t=403

Backpropagation (summary)

The network output a,, is defined by the weights W (©©) and biases b(® of the output layer, and
The activations of a hidden layer h; with activation function ay,, weights W (1) and biases b(1):

ao(X) = ao(2o) = GJO(W(O)CLM(zhl) + b(o)) = aO(W(O)ahl(W(l)x + b(l)) + b(o))

0L(a,()) 9L (ao(z))
aw, and —.

Decomposes into gradient of layer above, gradient of activation function, gradient of layer input:

0L(a,)  0L(a,) Oap, Oz, (8£(a0) da, 0z, ) Oap, 0Oz,

Minimize the loss by SGD. For layer [, compute

using the chain rule
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Activation functions for hidden layers
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Rectified Linear (ReLU): f(z) = maz(0, 2)
» Less smooth, but much faster (note: not differentiable at O)

Leaky ReLU: f(z) = {

z2<0
otherwise

relu
o = N w > w o

leaky_relu
o = N w - w o




Effect of activation functions on the gradient

During gradient descent, the gradient depends on the activation function ay:
aC(ao) _ 6£(ao) 6a'hl 8Zhl
ow T 8ahl 8zhl ow 0

Oa
If derivative of the activation function WZ’ is O, the weights w; are not updated
1

= Moreover, the gradients of previous layers will be reduced (vanishing gradient)

sigmoid, tanh: gradient is very small for large inputs: slow updates

Oa
With ReLU, BTZI = 1if z > 0, hence better against vanishing gradients
1

» Problem: for very negative inputs, the gradient is 0 and may never recover (dying ReLU)
» |Leaky ReLU has a small (0.01) gradient there to allow recovery
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ReLU vs Tanh

* What is the effect of using non-smooth activation functions?
» RelU produces piecewise-linear boundaries, but allows deeper networks
» Tanh produces smoother decision boundaries, but is slower

RelU, acc: 0.84, time: 0.03 sec tanh, acc: 0.84, time: 0.03 sec




Activation functions for output layer

e sigmoid converts output to probability in [0,1]

= For binary classification
e softmax converts all outputs (aka 'logits') to probabilities that sum up to 1

» For multi-class classification (k classes)

= Can cause over-confident models. If so, smooth the labels: Ygn00th = (1 — a)y + %
evi

2?21 e’

o Forregression, don't use any activation function, let the model learn the exact target

softmax(x, 1) =
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Weight initialization

« Initializing weights to 0 is bad: all gradients in layer will be identical (symmetry)

» Too small random weights shrink activations to 0 along the layers (vanishing gradient)

» Too large random weights multiply along layers (exploding gradient, zig-zagging)

 |deal: small random weights + variance of input and output gradients remains the same
= Glorot/Xavier initialization (for tanh): randomly sample from

_ 2
N(O’ 0)’ 0= \/ fan_in + fan_out
o fan_in: number of input units, fan_out: number of output units

2
fan_in

» Uniform sampling (instead of N(O, 0)) for deeper networks (w.r.t. vanishing gradients)

= He initialization (for ReLU): randomly sample from N (0, 0), 0 =




Weight initialization: transfer learning

 Instead of starting from scratch, start from weights previously learned from similar tasks

» This is, to a big extent, how humans learn so fast

o Transfer learning: learn weights on task T, transfer them to new network

= Weights can be frozen, or finetuned to the new data

e Only works if the previous task is 'similar' enough

» Meta-learning: learn a good initialization across many related tasks

Pre-trained on large dataset
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Optimizers

SGD with learning rate schedules

* Using a constant learning 7 rate for weight updates w ;1) = W, — nV L(w,) is not ideal

 Learning rate decay/annealing with decay rate k

= E.g. exponential (1,41 = nse %), inverse-time (1,1 = 1123),...
e Cyclical learning rates
= Change from small to large: hopefully in 'good' region long enough before diverging

= Warm restarts: aggressive decay + reset to initial learning rate

S0 d 50
- sgd_decay sgd_cyclic

i/ — W/




Momentum

» Imagine a ball rolling downhill: accumulates momentum, doesn't exactly follow steepest descent
= Reduces oscillation, follows larger (consistent) gradient of the loss surface
 Adds a velocity vector v with momentum 7 (e.g. 0.9, or increase from v = 0.5 to v = 0.99)

Wst1) = Wis) T V() With vy = V(1) = nVL(W(y))
» Nesterov momentum: Look where momentum step would bring you, compute gradient there
» Responds faster (and reduces momentum) when the gradient changes

Vis) = TV(s—1) — MTVL(W(g) +VV(5_1))

Momentum Nesterov momentum

I previous update B previous update

mmm momentum step mEmm momentum step

I gradient step I ‘'lookahead' gradient step
mmm actual step Hmm actual step




Momentum in practice

= momentum

| = momentum | = nesterov
i

W/

/




Adaptive gradients

» 'Correct' the learning rate for each w; based on specific local conditions (layer depth, fan-in,...)
« Adagrad: scale i) according to squared sum of previous gradients G; () = Z:Zl E(wiy(t))z
= Update rule for w;. Usually € = 1077 (avoids division by 0), n = 0.001.

n
Wi (5+1) = Wi(s) — VL(wj(s))

Gi,(s) + €

« RMSProp: use moving average of squared gradients m; () = Ym; ;1) + (1 — 7)v5(wi,(s))2
= Avoids that gradients dwindle to 0 as G; () grows. Usually v = 0.9, = 0.001

n
Wi (s+1) = Wi (s) — M) T € Vﬁ(wz}(s))
1,(8
—
— sgd —
- gdagrad m— [MSProp
m— MSProp = [MSProp_mom
| I




Adam (Adaptive moment estimation)

e Adam: RMSProp + momentum. Adds moving average for gradients as well (2 = momentum):

= Adds a bias correction to avoid small initial gradients: 1m; ;) = T’T(;) and g; (5 = fi_’(%
9i,(s) = V29i,(s—1) T (1- 72)V‘C(wi,(s))

wi,(s—i—l) — wi,(s) - gi,(s)




SGD Optimizer Zoo

* RMSProp often works well, but do try alternatives. For even more optimizers, see here.

sgd
sgd_decay
momentum
nesterov
adagrad
rmsprop
rmsprop_mom
adam
sgd_cyclic

[



https://ruder.io/optimizing-gradient-descent

Neural networks in practice

There are many practical courses on training neural nets. E.g.:

» With TensorFlow: https://www.tensorflow.org/resources/learn-ml
» With PyTorch: fast.ai course, https://pytorch.org/tutorials/

Here, we'll use Keras, a general API for building neural networks
» Default API for TensorFlow, also has backends for CNTK, Theano

Focus on key design decisions, evaluation, and regularization

Running example: Fashion-MNIST
= 28x28 pixel images of 10 classes of fashion items

‘—L

Shirt Pullover Sandal Trouser Pullover


https://www.tensorflow.org/resources/learn-ml
https://course.fast.ai/
https://pytorch.org/tutorials/

Building the network

o We first build a simple sequential model (no branches)
 Input layer ('input_shape'): a flat vector of 28*28=784 nodes
» We'll see how to properly deal with images later
* Two dense hidden layers: 512 nodes each, RelLU activation
= Glorot weight initialization is applied by default
o Qutput layer: 10 nodes (for 10 classes) and softmax activation

network = models.Sequential()
network.add(layers.Dense(512, activation='relu',

kernel initializer='he normal', input shape=(28 * 28,)))
network.add(layers.Dense(512, activation='relu',

kernel initializer='he normal'))
network.add(layers.Dense(10, activation='softmax'))



Model summary

e Lots of parameters (weights and biases) to learn!
» hidden layer 1: (28 28 + 1) 512 = 401920
» hidden layer 2: (512 + 1) * 512 = 262656
= output layer: (512 + 1) *10 = 5130

network.summary ()

Model: "sequential"

Layer (type) Output Shape Param #
dense (Dense) (None, 512) 401920
dense 1 (Dense) (None, 512) 262656
dense 2 (Dense) (None, 10) 5130

Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0




Choosing loss, optimizer, metrics

e Loss function
» Cross-entropy (log loss) for multi-class classification (y¢r4e is one-hot encoded)
» Use binary crossentropy for binary problems (single output node)
» Use sparse categorical crossentropy if yirye IS label-encoded (1,2,3,...)
o Optimizer
» Any of the optimizers we discussed before. RMSprop usually works well.
o Metrics
» To monitor performance during training and testing, e.g. accuracy

# Shorthand

network.compile(loss='categorical crossentropy',

optimizer='rmsprop', metrics=['accuracy'])

# Detailed

network.compile(loss=CategoricalCrossentropy(label smoothing=0.01),
optimizer=RMSprop(learning rate=0.001, momentum=0.0)
metrics=[Accuracy()])



Preprocessing: Normalization, Reshaping, Encoding

» Always normalize (standardize or min-max) the inputs. Mean should be close to 0.
= Avoid that some inputs overpower others
» Speed up convergence

Oa

h .
2 are (near) O for large inputs

o If some gradients become much larger than others, SGD will start zig-zagging
» Reshape the data to fit the shape of the input layer, e.g. (n, 28*28) or (n, 28,28)
» Tensor with instances in first dimension, rest must match the input layer

o Gradients of activation functions

e In multi-class classification, every class is an output node, so one-hot-encode the labels
» e.g.class '4' becomes [0,0,0,0,1,0,0,0,0,0]

X = X.astype('float32') / 255
= X.reshape( (60000, 28 * 28))
y = to categorical(y)

b
|



Choosing training hyperparameters

» Number of epochs: enough to allow convergence
= Too much: model starts overfitting (or just wastes time)
e Batch size: small batches (e.g. 32, 64,... samples) often preferred
= 'Noisy' training data makes overfitting less likely
o Larger batches generalize less well (‘generalization gap')
» Requires less memory (especially in GPUs)

» Large batches do speed up training, may converge in fewer epochs
o Batch size interacts with learning rate

» Instead of shrinking the learning rate you can increase batch size

history = network.fit(X train, y train, epochs=3, batch size=32);

Epoch 1/3
1875/1875 [ ] - 24s 13ms/step - loss: 0.4331 - accuracy: 0.8529
Epoch 2/3
1875/1875 [ ] - 25s 13ms/step - loss: 0.4242 - accuracy: 0.8568
Epoch 3/3

1875/1875 [======================= ] - 26s l4ms/step - loss: 0.4183 - accuracy: 0.8573


https://openreview.net/pdf?id=B1Yy1BxCZ

Predictions and evaluations

We can now call predict to generate predictions, and evaluate the trained model on the entire test set

network.predict (X test)
test loss, test acc = network.evaluate(X test, y test)

[0.0240177 0.0001167 0.4472437 0.0056629 0.057807 0.000094 0.4632739
0.0000267 0.0017463 0.0000112]



True label: [0.0.1.0.0.0.0.0.0.0.]

313/313 | ] - 2s Tms/step - loss: 0.3845 - accuracy: 0.8636
Test accuracy: 0.8636000156402588




Model selection

Loss/Accuracy

e How many epochs do we need for training?

» Train the neural net and track the loss after every iteration on a validation set
= You can add a callback to the fit version to get info on every epoch

» Best model after a few epochs, then starts overfitting

Training Loss and Accuracy [Epoch 24, Max Acc 0.8999]
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Early stopping

» Stop training when the validation loss (or validation accuracy) no longer improves
» Loss can be bumpy: use a moving average or wait for k steps without improvement

earlystop = callbacks.EarlyStopping(monitor='val loss', patience=3)
model.fit(x train, y train, epochs=25, batch size=512, callbacks=
[earlystop])

Training Loss and Accuracy [Epoch 6, Max Acc 0.8686]
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Regularization and memorization capacity

The number of learnable parameters is called the model capacity

A model with more parameters has a higher memorization capacity
» Too high capacity causes overfitting, too low causes underfitting
» In the extreme, the training set can be 'memorized' in the weights

Smaller models are forced it to learn a compressed representation that generalizes better
» Find the sweet spot: e.g. start with few parameters, increase until overfitting stars.

Example: 256 nodes in first layer, 32 nodes in second layer, similar performance

Training Loss and Accuracy [Epoch 25, Max Acc 0.8920]
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Information bottleneck

« If alayer is too narrow, it will lose information that can never be recovered by subsequent layers
» Information bottleneck theory defines a bound on the capacity of the network
» Imagine that you need to learn 10 outputs (e.g. classes) and your hidden layer has 2 nodes
» This is like trying to learn 10 hyperplanes from a 2-dimensional representation
o Example: bottleneck of 2 nodes, no overfitting, much higher training loss

Training Loss and Accuracy [Epoch 29, Max Acc 0.7436]
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Weight regularization (weight decay)

Loss/Accuracy
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As we did many times before, we can also add weight regularization to our loss function
L1 regularization: leads to sparse networks with many weights that are O
L2 regularization: leads to many very small weights

network = models.Sequential()

network.add(layers.Dense (256, activation='relu',

kernel regularizer=regularizers.1l2(0.001), input shape=(28 * 28,)))
network.add(layers.Dense(128, activation='relu',

kernel regularizer=regularizers.12(0.001)))

Training Loss and Accuracy [Epoch 25, Max Acc 0.8726]
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Dropout

» Every iteration, randomly set a number of activations a; to 0

e Dropout rate : fraction of the outputs that are zeroed-out (e.g. 0.1 - 0.5)

« |dea: break up accidental non-significant learned patterns

o At test time, nothing is dropped out, but the output values are scaled down by the dropout rate
= Balances out that more units are active than during training




Dropout layers

Loss/Accuracy

o Dropout is usually implemented as a special layer

network models.Sequential()

network.add(layers.Dense (256, activation='relu', input shape=(28 *

28,)))
network.add(layers.Dropout(0.5))

network.add(layers.Dense(32, activation='relu'))

network.add(layers.Dropout(0.5))

network.add(layers.Dense(10, activation='softmax'))

Training Loss and Accuracy [Epoch 49, Max Acc 0.8982]
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Batch Normalization

» We've seen that scaling the input is important, but what if layer activations become very large?
= Same problems, starting deeper in the network
» Batch normalization: normalize the activations of the previous layer within each batch
» Within a batch, set the mean activation close to O and the standard deviation close to 1
o Across badges, use exponential moving average of batch-wise mean and
variance
» Allows deeper networks less prone to vanishing or exploding gradients

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input shape=(28 *
28,)))

network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))
network.add(layers.Dense (256, activation='relu'))
network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))
network.add(layers.Dense(64, activation='relu'))
network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))
network.add(layers.Dense(32, activation='relu'))
network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))
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Tuning multiple hyperparameters

» You can wrap Keras models as scikit-learn models and use any tuning technique
o Keras also has built-in RandomSearch (and HyperBand and BayesianOptimization - see later)

def make model (hp):

m.add (Dense(units=hp.Int('units', min value=32, max value=512,
step=32)))

m.compile(optimizer=Adam(hp.Choice('learning rate', [le-2, le-3,
le-41)))

return model

from tensorflow.keras.wrappers.scikit learn import KerasClassifier
clf = KerasClassifier(make model)
grid = GridSearchCV(clf, param grid=param grid, cv=3)

from kerastuner.tuners import RandomSearch
tuner = keras.RandomSearch(build model, max_ trials=5)



Summary

Neural architectures

Training neural nets
= Forward pass: Tensor operations
» Backward pass: Backpropagation

Neural network design:
= Activation functions
= Weight initialization
= Optimizers

Neural networks in practice
Model selection

= Early stopping

= Memorization capacity and information bottleneck
» L1/L2 regularization

= Dropout

= Batch normalization



