Lecture 8. Neural Networks

How to train your neurons

Joaquin Vanschoren

Overview

Neural architectures

Training neural nets
= Forward pass: Tensor operations
» Backward pass: Backpropagation

Neural network design:
= Activation functions
= Weight initialization
= Optimizers

Neural networks in practice
Model selection

= Early stopping

= Memorization capacity and information bottleneck
» L1/L2 regularization

= Dropout

= Batch normalization

Linear models as a building block

o Logistic regression, drawn in a different, neuro-inspired, way
» Linear model: inner product (2) of input vector x and weight vector w, plus bias wy
» Logistic (or sigmoid) function maps the output to a probability in [0,1]
» Uses log loss (cross-entropy) and gradient descent to learn the weights

7 (x) = sigmoid(z) = sigmoid(wy + wx) = sigmoid(wy + wy * &1 + wy * To+. .. +w, * x,)

input

Basic Architecture

« Add one (or more) hidden layers h with k nodes (or units, cells, neurons)
= Every 'neuron' is a tiny function, the network is an arbitrarily complex function
= Weights w; j between node ¢ and node j form a weight matrix w per layer [

e Every neuron weights the inputs x and passes it through a non-linear activation function
= Activation functions (f, g) can be different per layer, output a is called activation

h(x) =a=f(z) = (Wx+w() o(x) = g(WZa+w()

9 weights, 4 biases

More layers

o Add more layers, and more nodes per layer, to make the model more complex
= For simplicity, we don't draw the biases (but remember that they are there)
* In dense (fully-connected) layers, every previous layer node is connected to all nodes
e The output layer can also have multiple nodes (e.g. 1 per class in multi-class classification)

N< A <A <A< AN
AR AT)
R RS RS W

J

2 AR)
0, RN AN
VN A
. ROEALE

.. "’

600 weights, 65 biases

Why layers?

e Each layer acts as a filter and learns a new representation of the data
» Subsequent layers can learn iterative refinements
» Easier that learning a complex relationship in one go
o Example: for image input, each layer yields new (filtered) images
= Can learn multiple mappings at once: weight tensor W yields activation tensor A
= From low-level patterns (edges, end-points, ...) to combinations thereof
» Each neuron 'lights up' if certain patterns occur in the input

Layer 1 Layer 2 Layer 3
representations representations representations

Layer 4
representations
(final output)

input
E

Layer 1 Layer 2 Layer 3 Layer 4

Original -
N

OCONOOOPABWN=O

Other architectures

e There exist MANY types of networks for many different tasks
e Convolutional nets for image data, Recurrent nets for sequential data, ...
e Also used to learn representations (embeddings), generate new images, text, ...

Deep Feed Forward (DFF) Recurrent Neural Network (RNN) Deep Convolutional Network (DCN)

- Input Cell
Hidden Cell - \’/ J \./ \./ X
© Probablistic Hidden Cell ;:;.}’é‘:‘{.‘;: o “""‘\"’"‘ V><\ />’ ‘<\ -
A AN SD .
@ output Cell - \'/,‘\\’, @ VX\,\/\/Q
. NN
. Match Input Output Cell v_\/\/\/Q
. Recurrent Cell Auto Encoder (AE) Variational AE (VAE) /\>_</ \/Q
~ Kernel

@

Deep Residual Network (DRN)

-

O Convolution or Pool

<

XOX"‘ A

Training Neural Nets

Design the architecture, choose activation functions (e.g. sigmoids)

Choose a way to initialize the weights (e.g. random initialization)

Choose a loss function (e.g. log loss) to measure how well the model fits training data

Choose an optimizer (typically an SGD variant) to update the weights

Input X

'

o Layer
" | (data transformation)

Weights

Layer
(data transformation)

/

Weight Predictions
update Y'

\
Loss score

\

Weights
A

True targets
Y

Mini-batch Stochastic Gradient Descent (recap)

1. Draw a batch of batch_size training data X and y

2. Forward pass : pass X though the network to yield predictions ¥

3. Compute the loss £ (mismatch between y and y)

4. Backward pass : Compute the gradient of the loss with regard to every weight
e Backpropagate the gradients through all the layers

5.Update W: W; 1) = W) — % *

Repeat until n passes (epochs) are made through the entire training set

Forward pass

» We can naturally represent the data as tensors

Features {

= Numerical n-dimensional array (with n axes)

2D tensor: matrix (samples, features)

3D tensor: time series (samples, timesteps, features)

4D tensor: color images (samples, height, width, channels)

5D tensor: video (samples, frames, height, width, channels)

Colorchannels/ [
/JX Samples

~
Timesteps

Height ||
/‘(mples

Width

Tensor operations

e The operations that the network performs on the data can be reduced to a series of tensor
operations
» These are also much easier to run on GPUs
« A dense layer with sigmoid activation, input tensor X, weight tensor W, bias b:

y = sigmoid(np.dot(X, W) + b)
» Tensor dot product for 2D inputs (a samples, b features, ¢ hidden nodes)

C
A

/4 N\
~
y.shape:
(b, c)
X.y=z
b < Column of y
b
A
P
x.shape: Vo z.shape:
(a, b) Vo (a, c)
a o
- D z[i, j
Row of x i i1

Element-wise operations

o Activation functions and addition are element-wise operations:

def sigmoid(x):
return 1/(1 + np.exp(-x))

def add(x, y):
return x + y

» Note: if y has a lower dimension than X, it will be broadcasted: axes are added to match the
dimensionality, and y is repeated along the new axes

>>> np.array([[1,2],[3,4]]) + np.array([10,20])
array([[1l1l, 227,
[13, 2411])

Backward pass (backpropagation)

For last layer, compute gradient of the loss function £ w.r.t all weights of layer [

- 0L oL]

8'11)070 e 8’[1)07[

oL
vc pu— pu—

oL oL

| Qw7 Owyy
. . . e . 8£(xj,yj)
 Sum up the gradients for all x; in minibatch: Zj e

0
W)

Update all weights in a layer at once (with learning rate 7): W((illl) = W(E.l)) - Zj

Repeat for next layer, iterating backwards (most efficient, avoids redundant calculations)

A
Loss

Y

Backpropagation (example)

e Imagine feeding a single data point, output is
g = g(z) = g(wo + w1 * a1 + w2 * az+. .. +wp * ap)
e Decrease loss by updating weights:

o

= Update the weights of last layer to maximize improvement: w; (pew) = Wi — 5.~ * 1

= To compute gradient

e Eg., withl =

gﬁ_ we need the chain rule: f(g(z)) = f'(g(x)) * ¢'(x)

oL 0L dg 0z

ow; Og 0z Ow;

(y — 9)? and sigmoid o g_zi =(y—9) *x0'(z) * a;

I

Backpropagation (2)

» Another way to decrease the loss L is to update the activations a;
= To update a; = f(z;), we need to update the weights of the previous layer
= We want to nudge a; in the right direction by updating w;_;:

oL OL Oa; 0z (8[, 0g Bzo) Oa; O0z;

3wi,j B 8a,i 321 Gwi,j a 3g 820 304' 321 Bwi,j
oL Og . 0z, .) Oa; el 0z; -]
= We know e and D0 from the previous step, Pa, — Wir 5, = f'and Jo; — X

Backpropagation (3)

o With multiple output nodes, L is the sum of all per-output (per-class) losses

oL
Bai

Per layer, sum up gradients for every point x in the batch: Zj

is sum of the gradients for every output
OL(x;,y;)
ow

Update all weights of every layer [

O _)
" Wy = Wey =12 70

Repeat with a new batch of data until loss converges

input

Nice animation of the entire process

output

https://youtu.be/Ilg3gGewQ5U?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&t=403

Backpropagation (summary)

The network output a,, is defined by the weights W (©©) and biases b(® of the output layer, and
The activations of a hidden layer h; with activation function ay,, weights W (1) and biases b(1):

ao(X) = ao(2o) = GJO(W(O)CLM(zhl) + b(o)) = aO(W(O)ahl(W(l)x + b(l)) + b(o))

0L(a,()) 9L (ao(z))
aw, and —.

Decomposes into gradient of layer above, gradient of activation function, gradient of layer input:

0L(a,) 0L(a,) Oap, Oz, (8£(a0) da, 0z,) Oap, 0Oz,

Minimize the loss by SGD. For layer [, compute

using the chain rule

OW®W dap, Oz, OWD da, 0z, dap,) Ozn, OW D)
= =gt

Zh19 P 20| Qo Fa,

Wwo
g L

Activation functions for hidden layers

1.0 4

sigmoid

0.0 -

Tanh: f(z) = <

Sigmoid: f(z) =

1

1+e*
_2 __1

+€_2Z
» Activations around O are better for gradient descent convergence

o
o

I
»

tanh

1.0

0.5 A

0.0 -

~0.5

~1.0 4

0.01z
z

Rectified Linear (ReLU): f(z) = maz(0, 2)
» Less smooth, but much faster (note: not differentiable at O)

Leaky ReLU: f(z) = {

z2<0
otherwise

relu
o = N w > w o

leaky_relu
o = N w - w o

Effect of activation functions on the gradient

During gradient descent, the gradient depends on the activation function ay:
aC(ao) _ 6£(ao) 6a'hl 8Zhl
ow T 8ahl 8zhl ow 0

Oa
If derivative of the activation function WZ’ is O, the weights w; are not updated
1

= Moreover, the gradients of previous layers will be reduced (vanishing gradient)

sigmoid, tanh: gradient is very small for large inputs: slow updates

Oa
With ReLU, BTZI = 1if z > 0, hence better against vanishing gradients
1

» Problem: for very negative inputs, the gradient is 0 and may never recover (dying ReLU)
» |Leaky ReLU has a small (0.01) gradient there to allow recovery

1.0 1.0] 6 6
0.8 51 51
05 1
44 5 4
T 06 >
S - 5 [SE
g S 00 2 3 o
o - = X
% 0.4 © 2
2 Q@
-05 1
02 14
o1
0.0 -1.0 1 01
6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6

ReLU vs Tanh

* What is the effect of using non-smooth activation functions?
» RelU produces piecewise-linear boundaries, but allows deeper networks
» Tanh produces smoother decision boundaries, but is slower

RelU, acc: 0.84, time: 0.03 sec tanh, acc: 0.84, time: 0.03 sec

Activation functions for output layer

e sigmoid converts output to probability in [0,1]

= For binary classification
e softmax converts all outputs (aka 'logits') to probabilities that sum up to 1

» For multi-class classification (k classes)

= Can cause over-confident models. If so, smooth the labels: Ygn00th = (1 — a)y + %
evi

2?21 e’

o Forregression, don't use any activation function, let the model learn the exact target

softmax(x, 1) =

1.0 4 0.8 1
0.8 1 0.6

T 0.6 - o
g € 0.4 -

&

.9 0.4 o

(%] - (2]
0.2 -

0.2
0.0 0.0 -
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

input input

Weight initialization

« Initializing weights to 0 is bad: all gradients in layer will be identical (symmetry)

» Too small random weights shrink activations to 0 along the layers (vanishing gradient)

» Too large random weights multiply along layers (exploding gradient, zig-zagging)

 |deal: small random weights + variance of input and output gradients remains the same
= Glorot/Xavier initialization (for tanh): randomly sample from

_ 2
N(O’ 0)’ 0= \/ fan_in + fan_out
o fan_in: number of input units, fan_out: number of output units

2
fan_in

» Uniform sampling (instead of N(O, 0)) for deeper networks (w.r.t. vanishing gradients)

= He initialization (for ReLU): randomly sample from N (0, 0), 0 =

Weight initialization: transfer learning

 Instead of starting from scratch, start from weights previously learned from similar tasks

» This is, to a big extent, how humans learn so fast

o Transfer learning: learn weights on task T, transfer them to new network

= Weights can be frozen, or finetuned to the new data

e Only works if the previous task is 'similar' enough

» Meta-learning: learn a good initialization across many related tasks

Pre-trained on large dataset

o ‘5,\6 § ; h
(e eeIAYAN
O PO A ¢
1 N ».;/Q\\,/- ".’(\“.‘}(‘ |
1 N \/O V/'“\'/‘ I
K. O s

\

\

AVAVAVAVE

DO
O

Copy, including IearnW ,

ORI
RN

Fine-tune on new, similar dataset

v,
ﬁ\\'fk\},{

A

v

Optimizers

SGD with learning rate schedules

* Using a constant learning 7 rate for weight updates w ;1) = W, — nV L(w,) is not ideal

 Learning rate decay/annealing with decay rate k

= E.g. exponential (1,41 = nse %), inverse-time (1,1 = 1123),...
e Cyclical learning rates
= Change from small to large: hopefully in 'good' region long enough before diverging

= Warm restarts: aggressive decay + reset to initial learning rate

S0 d 50
- sgd_decay sgd_cyclic

i/ — W/

Momentum

» Imagine a ball rolling downhill: accumulates momentum, doesn't exactly follow steepest descent
= Reduces oscillation, follows larger (consistent) gradient of the loss surface
 Adds a velocity vector v with momentum 7 (e.g. 0.9, or increase from v = 0.5 to v = 0.99)

Wst1) = Wis) T V() With vy = V(1) = nVL(W(y))
» Nesterov momentum: Look where momentum step would bring you, compute gradient there
» Responds faster (and reduces momentum) when the gradient changes

Vis) = TV(s—1) — MTVL(W(g) +VV(5_1))

Momentum Nesterov momentum

I previous update B previous update

mmm momentum step mEmm momentum step

I gradient step I ‘'lookahead' gradient step
mmm actual step Hmm actual step

Momentum in practice

= momentum

| = momentum | = nesterov
i

W/

/

Adaptive gradients

» 'Correct' the learning rate for each w; based on specific local conditions (layer depth, fan-in,...)
« Adagrad: scale i) according to squared sum of previous gradients G; () = Z:Zl E(wiy(t))z
= Update rule for w;. Usually € = 1077 (avoids division by 0), n = 0.001.

n
Wi (5+1) = Wi(s) — VL(wj(s))

Gi,(s) + €

« RMSProp: use moving average of squared gradients m; () = Ym; ;1) + (1 — 7)v5(wi,(s))2
= Avoids that gradients dwindle to 0 as G; () grows. Usually v = 0.9, = 0.001

n
Wi (s+1) = Wi (s) — M) T € Vﬁ(wz}(s))
1,(8
—
— sgd —
- gdagrad m— [MSProp
m— MSProp = [MSProp_mom
| I

Adam (Adaptive moment estimation)

e Adam: RMSProp + momentum. Adds moving average for gradients as well (2 = momentum):

= Adds a bias correction to avoid small initial gradients: 1m; ;) = T’T(;) and g; (5 = fi_’(%
9i,(s) = V29i,(s—1) T (1- 72)V‘C(wi,(s))

wi,(s—i—l) — wi,(s) - gi,(s)

SGD Optimizer Zoo

* RMSProp often works well, but do try alternatives. For even more optimizers, see here.

sgd
sgd_decay
momentum
nesterov
adagrad
rmsprop
rmsprop_mom
adam
sgd_cyclic

[

https://ruder.io/optimizing-gradient-descent

Neural networks in practice

There are many practical courses on training neural nets. E.g.:

» With TensorFlow: https://www.tensorflow.org/resources/learn-ml
» With PyTorch: fast.ai course, https://pytorch.org/tutorials/

Here, we'll use Keras, a general API for building neural networks
» Default API for TensorFlow, also has backends for CNTK, Theano

Focus on key design decisions, evaluation, and regularization

Running example: Fashion-MNIST
= 28x28 pixel images of 10 classes of fashion items

‘—L

Shirt Pullover Sandal Trouser Pullover

https://www.tensorflow.org/resources/learn-ml
https://course.fast.ai/
https://pytorch.org/tutorials/

Building the network

o We first build a simple sequential model (no branches)
 Input layer ('input_shape'): a flat vector of 28*28=784 nodes
» We'll see how to properly deal with images later
* Two dense hidden layers: 512 nodes each, RelLU activation
= Glorot weight initialization is applied by default
o Qutput layer: 10 nodes (for 10 classes) and softmax activation

network = models.Sequential()
network.add(layers.Dense(512, activation='relu',

kernel initializer='he normal', input shape=(28 * 28,)))
network.add(layers.Dense(512, activation='relu',

kernel initializer='he normal'))
network.add(layers.Dense(10, activation='softmax'))

Model summary

e Lots of parameters (weights and biases) to learn!
» hidden layer 1: (28 28 + 1) 512 = 401920
» hidden layer 2: (512 + 1) * 512 = 262656
= output layer: (512 + 1) *10 = 5130

network.summary ()

Model: "sequential"

Layer (type) Output Shape Param #
dense (Dense) (None, 512) 401920
dense 1 (Dense) (None, 512) 262656
dense 2 (Dense) (None, 10) 5130

Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0

Choosing loss, optimizer, metrics

e Loss function
» Cross-entropy (log loss) for multi-class classification (y¢r4e is one-hot encoded)
» Use binary crossentropy for binary problems (single output node)
» Use sparse categorical crossentropy if yirye IS label-encoded (1,2,3,...)
o Optimizer
» Any of the optimizers we discussed before. RMSprop usually works well.
o Metrics
» To monitor performance during training and testing, e.g. accuracy

Shorthand

network.compile(loss='categorical crossentropy',

optimizer='rmsprop', metrics=['accuracy'])

Detailed

network.compile(loss=CategoricalCrossentropy(label smoothing=0.01),
optimizer=RMSprop(learning rate=0.001, momentum=0.0)
metrics=[Accuracy()])

Preprocessing: Normalization, Reshaping, Encoding

» Always normalize (standardize or min-max) the inputs. Mean should be close to 0.
= Avoid that some inputs overpower others
» Speed up convergence

Oa

h .
2 are (near) O for large inputs

o If some gradients become much larger than others, SGD will start zig-zagging
» Reshape the data to fit the shape of the input layer, e.g. (n, 28*28) or (n, 28,28)
» Tensor with instances in first dimension, rest must match the input layer

o Gradients of activation functions

e In multi-class classification, every class is an output node, so one-hot-encode the labels
» e.g.class '4' becomes [0,0,0,0,1,0,0,0,0,0]

X = X.astype('float32') / 255
= X.reshape((60000, 28 * 28))
y = to categorical(y)

b
|

Choosing training hyperparameters

» Number of epochs: enough to allow convergence
= Too much: model starts overfitting (or just wastes time)
e Batch size: small batches (e.g. 32, 64,... samples) often preferred
= 'Noisy' training data makes overfitting less likely
o Larger batches generalize less well (‘generalization gap')
» Requires less memory (especially in GPUs)

» Large batches do speed up training, may converge in fewer epochs
o Batch size interacts with learning rate

» Instead of shrinking the learning rate you can increase batch size

history = network.fit(X train, y train, epochs=3, batch size=32);

Epoch 1/3
1875/1875 [] - 24s 13ms/step - loss: 0.4331 - accuracy: 0.8529
Epoch 2/3
1875/1875 [] - 25s 13ms/step - loss: 0.4242 - accuracy: 0.8568
Epoch 3/3

1875/1875 [=======================] - 26s l4ms/step - loss: 0.4183 - accuracy: 0.8573

https://openreview.net/pdf?id=B1Yy1BxCZ

Predictions and evaluations

We can now call predict to generate predictions, and evaluate the trained model on the entire test set

network.predict (X test)
test loss, test acc = network.evaluate(X test, y test)

[0.0240177 0.0001167 0.4472437 0.0056629 0.057807 0.000094 0.4632739
0.0000267 0.0017463 0.0000112]

True label: [0.0.1.0.0.0.0.0.0.0.]

313/313 |] - 2s Tms/step - loss: 0.3845 - accuracy: 0.8636
Test accuracy: 0.8636000156402588

Model selection

Loss/Accuracy

e How many epochs do we need for training?

» Train the neural net and track the loss after every iteration on a validation set
= You can add a callback to the fit version to get info on every epoch

» Best model after a few epochs, then starts overfitting

Training Loss and Accuracy [Epoch 24, Max Acc 0.8999]

0.9 1 II-II.IIII.III‘-.-.III-llll----'..lll'.llIIllllllll---
0.8 -
0.7 1
0.6 1
0.5 -
0.4 1 % enntra,
°t .Illl“‘...ll..llII“..." Tas?

0.3 | s train_loss

= train_acc
029 aun val_loss

= =« val_acc
0.1' T T T T T T

0 5 10 15 20 25

Epoch #

Early stopping

» Stop training when the validation loss (or validation accuracy) no longer improves
» Loss can be bumpy: use a moving average or wait for k steps without improvement

earlystop = callbacks.EarlyStopping(monitor='val loss', patience=3)
model.fit(x train, y train, epochs=25, batch size=512, callbacks=
[earlystop])

Training Loss and Accuracy [Epoch 6, Max Acc 0.8686]

0.9 -

0.8 - /

0.7 A

>
@)
o
>
80.6-
<
)
")
S 05 -
llll.....
- A N YRR

0.4 { === train_loss -.... e
== train_acc Lo i ussssssssssEssEEsEEsEEsS=&8
= =« val_loss

0.3 4 sms Va|_acc

0 1 2 3 4 5 6
Epoch #

Regularization and memorization capacity

The number of learnable parameters is called the model capacity

A model with more parameters has a higher memorization capacity
» Too high capacity causes overfitting, too low causes underfitting
» In the extreme, the training set can be 'memorized' in the weights

Smaller models are forced it to learn a compressed representation that generalizes better
» Find the sweet spot: e.g. start with few parameters, increase until overfitting stars.

Example: 256 nodes in first layer, 32 nodes in second layer, similar performance

Training Loss and Accuracy [Epoch 25, Max Acc 0.8920]

0.9 1 'R -ll-l--ll"-""-.'l-ll""."'l.-ll"-.'.
.....“" n (R
0.8 A
0.7 A
>
(S}
o
S 0.6 A
(9}
b
@ 0.5 -
(%)
[e]
= s
0.4 IS A
== train_loss '---."---...'..-.l'. "nn “"-...
03 4 t._ LA EEEEE R '...-.-‘ ammnm
. = Uraln_acc
= =1 val_loss
0.2 1 == val_acc
0 5 10 15 20 25

Epoch #

Information bottleneck

« If alayer is too narrow, it will lose information that can never be recovered by subsequent layers
» Information bottleneck theory defines a bound on the capacity of the network
» Imagine that you need to learn 10 outputs (e.g. classes) and your hidden layer has 2 nodes
» This is like trying to learn 10 hyperplanes from a 2-dimensional representation
o Example: bottleneck of 2 nodes, no overfitting, much higher training loss

Training Loss and Accuracy [Epoch 29, Max Acc 0.7436]

= train_loss
. = train_acc
'R Va|_|055

. = = val_acc

1.50 1
>
@)
o
S5 1.25 A
V]
<
@ 1.00 -
o
|

075- ll.ll.l..'- .--llllllllll

. /
0.50 1 . % . -
‘t
0.25 1
0 5 10 . » - i

Epoch #

Weight regularization (weight decay)

Loss/Accuracy

1.1 -

1.0 A

0.9 1

0.8 1

0.7 1

0.6 -

0.5 A

0.4 1

As we did many times before, we can also add weight regularization to our loss function
L1 regularization: leads to sparse networks with many weights that are O
L2 regularization: leads to many very small weights

network = models.Sequential()

network.add(layers.Dense (256, activation='relu',

kernel regularizer=regularizers.1l2(0.001), input shape=(28 * 28,)))
network.add(layers.Dense(128, activation='relu',

kernel regularizer=regularizers.12(0.001)))

Training Loss and Accuracy [Epoch 25, Max Acc 0.8726]

== train_loss
= train_acc
= = s val_loss
= = s val_acc

= ™
AR EEEE T i

T n g
[P "Epggagummnsn
“, a0

S
T .
"saun’

*
*

n g,y
n
L]
]
."- LI] LI]
LI IR LI Y “.llull

. .
] .
"ty gpgguunn”®

0 5 10 15 20 25
Epoch #

Dropout

» Every iteration, randomly set a number of activations a; to 0

e Dropout rate : fraction of the outputs that are zeroed-out (e.g. 0.1 - 0.5)

« |dea: break up accidental non-significant learned patterns

o At test time, nothing is dropped out, but the output values are scaled down by the dropout rate
= Balances out that more units are active than during training

Dropout layers

Loss/Accuracy

o Dropout is usually implemented as a special layer

network models.Sequential()

network.add(layers.Dense (256, activation='relu', input shape=(28 *

28,)))
network.add(layers.Dropout(0.5))

network.add(layers.Dense(32, activation='relu'))

network.add(layers.Dropout(0.5))

network.add(layers.Dense(10, activation='softmax'))

Training Loss and Accuracy [Epoch 49, Max Acc 0.8982]

1.0 A
0.9 4 e -.--.-I_'lllll.lII.“IIII.'lll--..-..l--
0.8 1
0.7 1 = train_loss
= train_acc
0.6 A mma vaI_lOSS
= =« val_acc
0.5 1
0.4 -
*
03 | “..‘.“‘...----“. ".“"..."...‘4.“‘l...‘¢..‘ 0“
0.2- T T T T T
0 10 20 30 40 50

Epoch #

Batch Normalization

» We've seen that scaling the input is important, but what if layer activations become very large?
= Same problems, starting deeper in the network
» Batch normalization: normalize the activations of the previous layer within each batch
» Within a batch, set the mean activation close to O and the standard deviation close to 1
o Across badges, use exponential moving average of batch-wise mean and
variance
» Allows deeper networks less prone to vanishing or exploding gradients

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input shape=(28 *
28,)))

network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))
network.add(layers.Dense (256, activation='relu'))
network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))
network.add(layers.Dense(64, activation='relu'))
network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))
network.add(layers.Dense(32, activation='relu'))
network.add(layers.BatchNormalization())
network.add(layers.Dropout(0.5))

Loss/Accuracy

1.2

1.0

0.8

0.6

0.4

Training Loss and Accuracy [Epoch 49, Max Acc 0.8906]

= train_loss
= train_acc
= = s val_loss
= = s val_acc

B a . PR]

“anam ey et ® " 28"y g umy s Ty

20 30 40 50
Epoch #

Tuning multiple hyperparameters

» You can wrap Keras models as scikit-learn models and use any tuning technique
o Keras also has built-in RandomSearch (and HyperBand and BayesianOptimization - see later)

def make model (hp):

m.add (Dense(units=hp.Int('units', min value=32, max value=512,
step=32)))

m.compile(optimizer=Adam(hp.Choice('learning rate', [le-2, le-3,
le-41)))

return model

from tensorflow.keras.wrappers.scikit learn import KerasClassifier
clf = KerasClassifier(make model)
grid = GridSearchCV(clf, param grid=param grid, cv=3)

from kerastuner.tuners import RandomSearch
tuner = keras.RandomSearch(build model, max_ trials=5)

Summary

Neural architectures

Training neural nets
= Forward pass: Tensor operations
» Backward pass: Backpropagation

Neural network design:
= Activation functions
= Weight initialization
= Optimizers

Neural networks in practice
Model selection

= Early stopping

= Memorization capacity and information bottleneck
» L1/L2 regularization

= Dropout

= Batch normalization

