Lecture 6. Data preprocessing

Real-world machine learning pipelines

Joaquin Vanschoren

Data transformations

- Machine learning models make a lot of assumptions about the data
- In reality, these assumptions are often violated
- We build *pipelines* that *transform* the data before feeding it to the learners
 - Scaling (or other numeric transformations)
 - Encoding (convert categorical features into numerical ones)
 - Automatic feature selection
 - Feature engineering (e.g. binning, polynomial features,...)
 - Handling missing data
 - Handling imbalanced data
 - Dimensionality reduction (e.g. PCA)
 - Learned embeddings (e.g. for text)
- Seek the best combinations of transformations and learning methods
 - Often done empirically, using cross-validation
 - Make sure that there is no data leakage during this process!

Scaling

- Use when different numeric features have different scales (different range of values)
 - Features with much higher values may overpower the others
- Goal: bring them all within the same range
- Different methods exist

Why do we need scaling?

- KNN: Distances depend mainly on feature with larger values
- SVMs: (kernelized) dot products are also based on distances
- Linear model: Feature scale affects regularization
 - Weights have similar scales, more interpretable

Standard scaling (standardization)

- Generally most useful, assumes data is more or less normally distributed
- Per feature, subtract the mean value μ , scale by standard deviation σ
- New feature has $\mu=0$ and $\sigma=1$, values can still be arbitrarily large

$$\mathbf{x}_{new} = rac{\mathbf{x} - \mu}{\sigma}$$

Min-max scaling

- Scales all features between a given min and max value (e.g. 0 and 1)
- Makes sense if min/max values have meaning in your data
- Sensitive to outliers

$$\mathbf{x}_{new} = rac{\mathbf{x} - x_{min}}{x_{max} - x_{min}} \cdot (max - min) + min$$

Robust scaling

- Subtracts the median, scales between quantiles q_{25} and q_{75}
- New feature has median 0, $q_{25}=-1$ and $q_{75}=1$
- Similar to standard scaler, but ignores outliers

Normalization

- Makes sure that feature values of each point (each row) sum up to 1 (L1 norm)
 - Useful for count data (e.g. word counts in documents)
- Can also be used with L2 norm (sum of squares is 1)
 - Useful when computing distances in high dimensions
 - Normalized Euclidean distance is equivalent to cosine similarity

Maximum Absolute scaler

- For sparse data (many features, but few are non-zero)
 - Maintain sparseness (efficient storage)
- Scales all values so that maximum absolute value is 1
- Similar to Min-Max scaling without changing 0 values

Power transformations

- Some features follow certain distributions
 - E.g. number of twitter followers is log-normal distributed
- Box-Cox transformations transform these to normal distributions (λ is fitted)
 - Only works for positive values, use Yeo-Johnson otherwise

$$bc_\lambda(x) = egin{cases} log(x) & \lambda = 0 \ rac{x^\lambda - 1}{\lambda} & \lambda
eq 0 \end{cases}$$

Categorical feature encoding

• Many algorithms can only handle numeric features, so we need to encode the categorical ones

	boro	salary	vegan
0	Manhattan	103	0
1	Queens	89	0
2	Manhattan	142	0
3	Brooklyn	54	1
4	Brooklyn	63	1
5	Bronx	219	0

Ordinal encoding

- Simply assigns an integer value to each category in the order they are encountered
- Only really useful if there exist a natural order in categories
 - Model will consider one category to be 'higher' or 'closer' to another

	boro	boro_ordinal	salary
0	Manhattan	2	103
1	Queens	3	89
2	Manhattan	2	142
3	Brooklyn	1	54
4	Brooklyn	1	63
5	Bronx	0	219

One-hot encoding (dummy encoding)

- Simply adds a new 0/1 feature for every category, having 1 (hot) if the sample has that category
- Can explode if a feature has lots of values, causing issues with high dimensionality
- What if test set contains a new category not seen in training data?
 - Either ignore it (just use all 0's in row), or handle manually (e.g. resample)

	boro	boro_Bronx	boro_Brooklyn	boro_Manhattan	boro_Queens	salary
0	Manhattan	0	0	1	0	103
1	Queens	0	0	0	1	89
2	Manhattan	0	0	1	0	142
3	Brooklyn	0	1	0	0	54
4	Brooklyn	0	1	0	0	63
5	Bronx	1	0	0	0	219

Target encoding

- Value close to 1 if category correlates with class 1, close to 0 if correlates with class 0
- Preferred when you have lots of category values. It only creates one new feature per class
- Blends posterior probability of the target $\frac{n_{iY}}{n_i}$ and prior probability $\frac{n_Y}{n}$.
 - n_{iY} : nr of samples with category i and class Y=1, n_i : nr of samples with category i
 - Blending: gradually decrease as you get more examples of category i and class Y=0

$$Enc(i) = rac{1}{1+e^{-(n_i-1)}} rac{n_{iY}}{n_i} + (1-rac{1}{1+e^{-(n_i-1)}}) rac{n_Y}{n_i}$$

• Same for regression, using $\frac{n_{iY}}{n_i}$: average target value with category i, $\frac{n_Y}{n}$: overall mean

Example

- For Brooklyn, $n_{iY}=2, n_i=2, n_Y=2, n=6$
- Would be closer to 1 if there were more examples, all with label 1

$$Enc(Brooklyn) = rac{1}{1+e^{-1}}rac{2}{2} + (1-rac{1}{1+e^{-1}})rac{2}{6} = 0,82$$

• Note: the implementation used here sets $Enc(i) = rac{n_Y}{n}$ when $n_{iY} = 1$

	boro	boro_encoded	salary	vegan
0	Manhattan	0.089647	103	0
1	Queens	0.333333	89	0
2	Manhattan	0.089647	142	0
3	Brooklyn	0.820706	54	1
4	Brooklyn	0.820706	63	1
5	Bronx	0.333333	219	0

In practice (scikit-learn)

- Ordinal encoding and one-hot encoding are implemented in scikit-learn
 - dtype defines that the output should be an integer

```
ordinal_encoder = OrdinalEncoder(dtype=int)
one_hot_encoder = OneHotEncoder(dtype=int)
```

- Target encoding is available in category_encoders
 - scikit-learn compatible
 - Also includes other, very specific encoders

target_encoder = TargetEncoder(return_df=True)

- All encoders (and scalers) follow the fit-transform paradigm
 - fit prepares the encoder, transform actually encodes the features
 - We'll discuss this next

```
encoder.fit(X, y)
X_encoded = encoder.transform(X,y)
```

Applying data transformations

- Data transformations should always follow a fit-predict paradigm
 - Fit the transformer on the training data only
 - E.g. for a standard scaler: record the mean and standard deviation
 - Transform (e.g. scale) the training data, then train the learning model
 - Transform (e.g. scale) the test data, then evaluate the model
- Only scale the input features (X), not the targets (y)
- If you fit and transform the whole dataset before splitting, you get data leakage
 - You have looked at the test data before training the model
 - Model evaluations will be misleading
- If you fit and transform the training and test data separately, you distort the data
 - E.g. training and test points are scaled differently

```
In practice (scikit-learn)
```

```
# choose scaling method and fit on training data
scaler = StandardScaler()
scaler.fit(X_train)
```

```
# transform training and test data
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

```
# calling fit and transform in sequence
X_train_scaled = scaler.fit(X_train).transform(X_train)
# same result, but more efficient computation
X_train_scaled = scaler.fit_transform(X_train)
```

Test set distortion

- Properly scaled: fit on training set, transform on training and test set
- Improperly scaled: fit and transform on the training and test data separately
 - Test data points nowhere near same training data points

Data leakage

- Cross-validation: training set is split into training and validation sets for model selection
- Incorrect: Scaler is fit on whole training set before doing cross-validation
 - Data leaks from validation folds into training folds, selected model may be optimistic
- Right: Scaler is fit on training folds only

No Information leakage

Pipelines

- A pipeline is a combination of data transformation and learning algorithms
- It has a fit, predict, and score method, just like any other learning algorithm
 - Ensures that data transformations are applied correctly

pipe = make pipeline(T1(), T2(), Classifier())

Classifier

In practice (scikit-learn)

- A pipeline combines multiple processing *steps* in a single estimator
- All but the last step should be data transformer (have a transform method)

```
# Make pipeline, step names will be 'minmaxscaler' and 'linearsvc'
pipe = make_pipeline(MinMaxScaler(), LinearSVC())
# Build pipeline with named steps
pipe = Pipeline([("scaler", MinMaxScaler()), ("svm", LinearSVC())])
# Correct fit and score
score = pipe.fit(X_train, y_train).score(X_test, y_test)
# Retrieve trained model by name
svm = pipe.named_steps["svm"]
```

```
# Correct cross-validation
scores = cross_val_score(pipe, X, y)
```

- If you want to apply different preprocessors to different columns, use ColumnTransformer
- If you want to merge pipelines, you can use FeatureUnion to concatenate columns

```
pipe = make_pipeline(preprocess, LinearSVC())
```

```
# Feature union of PCA features and selected features
union = FeatureUnion([("pca", PCA()), ("selected", SelectKBest())])
pipe = make_pipeline(union, LinearSVC())
```

• ColumnTransformer concatenates features in order

```
(OneHotEncoder(), categorical_features))
```


Pipeline selection

- We can safely use pipelines in model selection (e.g. grid search)
- Use '___' to refer to the hyperparameters of a step, e.g. svm__C

```
param_grid=param_grid).fit(X_train,y_train)
```

```
grid.score(X_test,y_test)
```

Example: Tune multiple steps at once

Automatic Feature Selection

It can be a good idea to reduce the number of features to only the most useful ones

- Simpler models that generalize better (less overfitting)
 - Curse of dimensionality (e.g. kNN)
 - Even models such as RandomForest can benefit from this
 - Sometimes it is one of the main methods to improve models (e.g. gene expression data)
- Faster prediction and training
 - Training time can be quadratic (or cubic) in number of features
- Easier data collection, smaller models (less storage)
- More interpretable models: fewer features to look at

Example: bike sharing

- The Bike Sharing Demand dataset shows the amount of bikes rented in Washington DC
- Some features are clearly more informative than others (e.g. temp, hour)
- Some are correlated (e.g. temp and feel_temp)
- We add two random features at the end

Unsupervised feature selection

- Variance-based
 - Remove (near) constant features
 - Choose a small variance threshold
 - Scale features before computing variance!
 - Infrequent values may still be important
- Covariance-based
 - Remove correlated features
 - The small differences may actually be important
 - You don't know because you don't consider the target

Covariance based feature selection

• Remove features X_i (= $X_{:,i}$) that are highly correlated (have high correlation coefficient ρ)

$$ho(X_1,X_2) = rac{\mathrm{cov}(X_1,X_2)}{\sigma(X_1)\sigma(X_2)} = rac{rac{1}{N-1}\sum_i (X_{i,1}-\overline{X_1})(X_{i,2}-\overline{X_2})}{\sigma(X_1)\sigma(X_2)}$$

• Should we remove feel_temp? Or temp? Maybe one correlates more with the target?

Supervised feature selection: overview

- Univariate: F-test and Mutual Information
- Model-based: Random Forests, Linear models, kNN
- Wrapping techniques (black-box search)
- Permutation importance

Univariate statistics (F-test)

- Consider each feature individually (univariate), independent of the model that you aim to apply
- Use a statistical test: is there a linear statistically significant relationship with the target?
- Use F-statistic (or corresponding p value) to rank all features, then select features using a threshold
 - Best k, best k %, probability of removing useful features (FPR),...
- Cannot detect correlations (e.g. temp and feel_temp) or interactions (e.g. binary features)

Feature importance (selection threshold 0.75)

F-statistic

• For regression: does feature X_i correlate (positively or negatively) with the target y?

$$ext{F-statistic} = rac{
ho(X_i,y)^2}{1-
ho(X_i,y)^2} \cdot (N-1)$$

- For classification: uses ANOVA: does X_i explain the between-class variance?
 - Alternatively, use the χ^2 test (only for categorical features)

$$ext{F-statistic} = rac{ ext{within-class variance}}{ ext{between-class variance}} = rac{ ext{var}(X_i)}{ ext{var}(X_i)}$$

Mutual information

• Measures how much information X_i gives about the target Y. In terms of entropy H:

$$MI(X,Y) = H(X) + H(Y) - H(X,Y)$$

- Idea: estimate H(X) as the average distance between a data point and its k Nearest Neighbors
 - You need to choose k and say which features are categorical
- Captures complex dependencies (e.g. hour, month), but requires more samples to be accurate

Model-based Feature Selection

- Use a tuned(!) supervised model to judge the importance of each feature
 - Linear models (Ridge, Lasso, LinearSVM,...): features with highest weights (coefficients)
 - Tree-based models: features used in first nodes (high information gain)
- Selection model can be different from the one you use for final modelling
- Captures interactions: features are more/less informative in combination (e.g. winter, temp)
- RandomForests: learns complex interactions (e.g. hour), but biased to high cardinality features

Relief: Model-based selection with kNN

- For I iterations, choose a random point $\mathbf{x_i}$ and find k nearest neighbors $\mathbf{x_k}$
- Increase feature weights if \mathbf{x}_i and \mathbf{x}_k have different class (near miss), else decrease
 - $\mathbf{w_i} = \mathbf{w_{i-1}} + (\mathbf{x_i} \text{nearMiss}_i)^2 (\mathbf{x_i} \text{nearHit}_i)^2$
- Many variants: ReliefF (uses L1 norm, faster), RReliefF (for regression), ...

Iterative Model-based Feature Selection

- Dropping many features at once is not ideal: feature importance may change in subset
- Recursive Feature Elimination (RFE)
 - Remove s least important feature(s), recompute remaining importances, repeat
- Can be rather slow

Feature importance (selection threshold 0.50)

Sequential feature selection (Wrapping)

- Evaluate your model with different sets of features, find best subset based on performance
- Greedy black-box search (can end up in local minima)
 - Backward selection: remove least important feature, recompute importances, repeat
 - Forward selection: set aside most important feature, recompute importances, repeat
 - Floating: add best new feature, remove worst one, repeat (forward or backward)
- Stochastic search: use random mutations in candidate subset (e.g. simulated annealing)

Permutation feature importance

- Defined as the decrease in model performance when a single feature value is randomly shuffled
 - This breaks the relationship between the feature and the target
- Model agnostic, metric agnostic, and can be calculated many times with different permutations
- Can be applied to unseen data (not possible with model-based techniques)
- Less biased towards high-cardinality features (compared with RandomForests)

Comparison

- Feature importances (scaled) and cross-validated R^2 score of pipeline
 - Pipeline contains features selection + Ridge
- Selection threshold value ranges from 25% to 100% of all features
- Best method ultimately depends on the problem and dataset at hand

Feature importance (selection threshold 0.50)

In practice (scikit-learn)

• Unsupervised: VarianceTreshold

```
selector = VarianceThreshold(threshold=0.01)
X_selected = selector.fit_transform(X)
variances = selector.variances_
```

- Univariate:
 - For regression: f_regression, mutual_info_regression
 - For classification: f_classification, chi2, mutual_info_classication
 - Selecting: SelectKBest, SelectPercentile, SelectFpr,...

```
selector = SelectPercentile(score_func=f_regression, percentile=50)
X_selected = selector.fit_transform(X,y)
selected_features = selector.get_support()
f_values, p_values = f_regression(X,y)
mi_values = mutual_info_regression(X,y,discrete_features=[])
```

- Model-based:
 - SelectFromModel : requires a model and a selection threshold
 - RFE, RFECV (recursive feature elimination): requires model and final nr features

```
selector = SelectFromModel(RandomForestRegressor(),
threshold='mean')
rfe_selector = RFE(RidgeCV(), n_features_to_select=20)
X_selected = selector.fit_transform(X)
rf_importances = Randomforest().fit(X, y).feature_importances_
```

• Sequential feature selection (from mlxtend, sklearn-compatible)

```
X_selected = selector.fit_transform(X)
```

• Permutation Importance (in sklearn.inspection), no fit-transform interface

Feature Engineering

- Create new features based on existing ones
 - Polynomial features
 - Interaction features
 - Binning
- Mainly useful for simple models (e.g. linear models)
 - Other models can learn interations themselves
 - But may be slower, less robust than linear models

Polynomials

- Add all polynomials up to degree d and all products
 - Equivalent to polynomial basis expansions

$$[1,x_1,\ldots,x_p]
ightarrow [1,x_1,\ldots,x_p,x_1^2,\ldots,x_p^2,\ldots,x_p^d,x_1x_2,\ldots,x_{p-1}x_p]$$

Binning

- Partition numeric feature values into *n* intervals (bins)
- Create n new one-hot features, 1 if original value falls in corresponding bin
- Models different intervals differently (e.g. different age groups)

	orig	[-3.0,-1.5]	[-1.5,0.0]	[0.0,1.5]	[1.5,3.0]
0	-0.752759	0.000000	1.000000	0.000000	0.000000
1	2.704286	0.000000	0.000000	0.000000	1.000000
2	1.391964	0.000000	0.000000	1.000000	0.000000

Binning + interaction features

- Add interaction features (or product features)
 - Product of the bin encoding and the original feature value
 - Learn different weights per bin

	orig	b0	b1	b2	b3	X*b0	X*b1	X*b2	X*b3
0	-0.752759	0.000000	1.000000	0.000000	0.000000	-0.000000	-0.752759	-0.000000	-0.000000
1	2.704286	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	2.704286
2	1.391964	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	1.391964	0.000000

Categorical feature interactions

- One-hot-encode categorical feature
- Multiply every one-hot-encoded column with every numeric feature
- Allows to built different submodels for different categories

	gender	age	pageviews	time
0	М	14	70	269
1	F	16	12	1522
2	М	12	42	235
3	F	25	64	63
4	F	22	93	21

	age_M	pageviews_M	time_M	gender_M_M	age_F	pageviews_F	time_F	gender_F_F
0	14	70	269	1	0	0	0	0
1	0	0	0	0	16	12	1522	1
2	12	42	235	1	0	0	0	0
3	0	0	0	0	25	64	63	1
4	0	0	0	0	22	93	21	1

Missing value imputation

- Data can be missing in different ways:
 - Missing Completely at Random (MCAR): purely random points are missing
 - Missing at Random (MAR): something affects missingness, but no relation with the value
 - E.g. faulty sensors, some people don't fill out forms correctly
 - Missing Not At Random (MNAR): systematic missingness linked to the value
 - Has to be modelled or resolved (e.g. sensor decay, sick people leaving study)
- Missingness can be encoded in different ways:'?', '-1', 'unknown', 'NA',...
- Also labels can be missing (remove example or use semi-supervised learning)

Overview

- Mean/constant imputation
- kNN-based imputation
- Iterative (model-based) imputation
- Matrix Factorization techniques

kNN Imputation (ACC:0.973)

Mean imputation

- Replace all missing values of a feature by the same value
 - Numerical features: mean or median
 - Categorical features: most frequent category
 - Constant value, e.g. 0 or 'missing' for text features
- Optional: add an indicator column for missingness
- Example: Iris dataset (randomly removed values in 3rd and 4th column)

Mean Imputation (ACC:0.913)

kNN imputation

- Use special version of kNN to predict value of missing points
- Uses only non-missing data when computing distances

kNN Imputation (ACC:0.973)

Iterative (model-based) Imputation

- Better known as Multiple Imputation by Chained Equations (MICE)
- Iterative approach
 - Do first imputation (e.g. mean imputation)
 - Train model (e.g. RandomForest) to predict missing values of a given feature
 - Train new model on imputed data to predict missing values of the next feature
 - \circ Repeat m times in round-robin fashion, leave one feature out at a time

Iterative Imputation (RandomForest) (ACC:0.960)

Matrix Factorization

- Basic idea: low-rank approximation
 - Replace missing values by 0
 - Factorize \mathbf{X} with rank $r: \mathbf{X}^{n imes p} = \mathbf{U}^{n imes r} \mathbf{V}^{r imes p}$
 - With n data points and p features
 - Solved using gradient descent
 - Recompute X: now complete

Matrix Factorization (ACC:0.973)

Soft-thresholded Singular Value Decomposition (SVD)

- Same basic idea, but smoother
 - Replace missing values by 0, compute SVD: $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathbf{T}}$

• Solved with gradient descent

- Reduce eigenvalues by shrinkage factor: $\lambda_i = s \cdot \lambda_i$
- Recompute X: now complete
- Repeat for *m* iterations

Comparison

- Best method depends on the problem and dataset at hand. Use cross-validation.
- Iterative Imputation (MICE) generally works well for missing (completely) at random data
 - Can be slow if the prediction model is slow
- Low-rank approximation techniques scale well to large datasets

In practice (scikit-learn)

- Simple replacement: SimpleImputer
 - Strategies: mean (numeric), median, most_frequent (categorical)
 - Choose whether to add indicator columns, and how missing values are encoded

```
imp = SimpleImputer(strategy='mean', missing_values=np.nan,
add_indicator=False)
X_complete = imp.fit_transform(X_train)
```

• kNN Imputation: KNNImputer

```
imp = KNNImputer(n_neighbors=5)
X_complete = imp.fit_transform(X_train)
```

- Multiple Imputation (MICE): IterativeImputer
 - Choose estimator (default: BayesianRidge) and number of iterations (default 10)

```
imp = IterativeImputer(estimator=RandomForestClassifier(),
max_iter=10)
X complete = imp.fit transform(X train)
```

In practice (fancyimpute)

- Cannot be used in CV pipelines (has fit_transform but no transform)
- Soft-Thresholded SVD: SoftImpute
 - Choose max number of gradient descent iterations
 - Choose shrinkage value for eigenvectors (default: $\frac{1}{N}$)

```
imp = SoftImpute(max_iter=10, shrinkage_value=None)
X_complete = imp.fit_transform(X)
```

- Low-rank imputation: MatrixFactorization
 - Choose rank of the low-rank approximation
 - Gradient descent hyperparameters: learning rate, epochs,...
 - Several variants exist

```
imp = MatrixFactorization(rank=10, learning_rate=0.001,
epochs=10000)
X_complete = imp.fit_transform(X)
```

Handling imbalanced data

- Problem:
 - You have a majority class with many times the number of examples as the minority class
 - Or: classes are balanced, but associated costs are not (e.g. FN are worse than FP)
- We already covered some ways to resolve this:
 - Add class weights to the loss function: give the minority class more weight
 - In practice: set class_weight='balanced'
 - Change the prediction threshold to minimize false negatives or false positives
- There are also things we can do by preprocessing the data
 - Resample the data to correct the imbalance
 - Random or model-based
 - Generate synthetic samples for the minority class
 - Build ensembles over different resampled datasets
 - Combinations of these

Random Undersampling

- Copy the points from the minority class
- Randomly sample from the majority class (with or without replacement) until balanced
 - Optionally, sample until a certain imbalance ratio (e.g. 1/5) is reached
 - Multi-class: repeat with every other class
- Preferred for large datasets, often yields smaller/faster models with similar performance

Model-based Undersampling

- Edited Nearest Neighbors
 - Remove all majority samples that are misclassified by kNN (mode) or that have a neighbor from the other class (all).
 - Remove their influence on the minority samples
- Condensed Nearest Neighbors
 - Remove all majority samples that are not misclassified by kNN
 - Focus on only the hard samples

EditedNearestNeighbours (AUC: 0.872)

Random Oversampling

- Copy the points from the majority class
- Randomly sample from the minority class, with replacement, until balanced
 - Optionally, sample until a certain imbalance ratio (e.g. 1/5) is reached
- Makes models more expensive to train, doens't always improve performance
- Similar to giving minority class(es) a higher weight (and more expensive)

Original (AUC: 0.831)

RandomOverSampler (AUC: 0.829)

Synthetic Minority Oversampling Technique (SMOTE)

- Repeatedly choose a random minority point and a neighboring minority point
 - Pick a new, artificial point on the line between them (uniformly)
- May bias the data. Be careful never to create artificial points in the test set.
- ADASYN (Adaptive Synthetic)
 - Similar, but starts from 'hard' minority points (misclassified by kNN)

Combined techniques

- Combines over- and under-sampling
- E.g. oversampling with SMOTE, undersampling with Edited Nearest Neighbors (ENN)
 - SMOTE can generate 'noisy' point, close to majority class points
 - ENN will remove up these majority points to 'clean up' the space

Original (AUC: 0.831)

SMOTEENN (AUC: 0.878)

Ensemble Resampling

- Bagged ensemble of balanced base learners. Acts as a learner, not a preprocessor
- BalancedBagging: take bootstraps, randomly undersample each, train models (e.g. trees)
 - Benefits of random undersampling without throwing out so much data
- Easy Ensemble: take multiple random undersamplings directly, train models
 - Traditionally uses AdaBoost as base learner, but can be replaced

Comparison

- The best method depends on the data (amount of data, imbalance,...)
 - For a very large dataset, random undersampling may be fine
- You still need to choose the appropriate learning algorithms
- Don't forget about class weighting and prediction thresholding
 - Some combinations are useful, e.g. SMOTE + class weighting + thresholding

Original (AUC: 0.831)

EasyEnsembleClassifier (AUC: 0.840)

In practice (imblearn)

- Follows fit-sample paradigm (equivalent of fit-transform, but also affects y)
- Undersampling: RandomUnderSampler, EditedNearestNeighbours,...
- (Synthetic) Oversampling: RandomOverSampler, SMOTE, ADASYN,...
- Combinations: SMOTEENN,...

```
X_resampled, y_resampled = SMOTE(k_neighbors=5).fit_sample(X, y)
```

- Can be used in imblearn pipelines (not sklearn pipelines)
 - imblearn pipelines are compatible with GridSearchCV,...
 - Sampling is only done in fit (not in predict)

```
smote_pipe = make_pipeline(SMOTE(), LogisticRegression())
scores = cross_validate(smote_pipe, X_train, y_train)
param_grid = {"k_neighbors": [3,5,7]}
grid = GridSearchCV(smote_pipe, param_grid=param_grid, X, y)
```

• The ensembling techniques should be used as wrappers

```
clf = EasyEnsembleClassifier(base_estimator=SVC()).fit(X_train,
y_train)
```

Real-world data

- The effect of sampling procedures can be unpredictable
- Best method can depend on the data and FP/FN trade-offs
- SMOTE and ensembling techniques often work well

RandomForest ROC curve on Speech dataset

Summary

- Data preprocessing is a crucial part of machine learning
 - Scaling is important for many distance-based methods (e.g. kNN, SVM, Neural Nets)
 - Categorical encoding is necessary for numeric methods (or implementations)
 - Selecting features can speed up models and reduce overfitting
 - Feature engineering is often useful for linear models
 - It is often better to impute missing data than to remove data
 - Imbalanced datasets require extra care to build useful models
- Pipelines allow us to encapsulate multiple steps in a convenient way
 - Avoids data leakage, crucial for proper evaluation
- Choose the right preprocessing steps and models in your pipeline
 - Cross-validation helps, but the search space is huge
 - Smarter techniques exist to automate this process (AutoML)