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Data transformations
Machine learning models make a lot of assumptions about the data

In reality, these assumptions are often violated

We build pipelines that transform the data before feeding it to the learners

Scaling (or other numeric transformations)

Encoding (convert categorical features into numerical ones)

Automatic feature selection

Feature engineering (e.g. binning, polynomial features,...)

Handling missing data

Handling imbalanced data

Dimensionality reduction (e.g. PCA)

Learned embeddings (e.g. for text)

Seek the best combinations of transformations and learning methods

Often done empirically, using cross-validation

Make sure that there is no data leakage during this process!



Scaling
Use when different numeric features have different scales (different range of values)

Features with much higher values may overpower the others

Goal: bring them all within the same range

Different methods exist



Why do we need scaling?
KNN: Distances depend mainly on feature with larger values

SVMs: (kernelized) dot products are also based on distances

Linear model: Feature scale affects regularization

Weights have similar scales, more interpretable



Standard scaling (standardization)
Generally most useful, assumes data is more or less normally distributed

Per feature, subtract the mean value , scale by standard deviation 

New feature has  and , values can still be arbitrarily large

μ σ

μ = 0 σ = 1

xnew =
x − μ

σ



Min-max scaling
Scales all features between a given  and  value (e.g. 0 and 1)

Makes sense if min/max values have meaning in your data

Sensitive to outliers

min max

xnew = ⋅ (max − min) + min
x − xmin

xmax − xmin



Robust scaling
Subtracts the median, scales between quantiles  and 

New feature has median 0,  and 

Similar to standard scaler, but ignores outliers

q25 q75

q25 = −1 q75 = 1



Normalization
Makes sure that feature values of each point (each row) sum up to 1 (L1 norm)

Useful for count data (e.g. word counts in documents)

Can also be used with L2 norm (sum of squares is 1)

Useful when computing distances in high dimensions

Normalized Euclidean distance is equivalent to cosine similarity



Maximum Absolute scaler
For sparse data (many features, but few are non-zero)

Maintain sparseness (efficient storage)

Scales all values so that maximum absolute value is 1

Similar to Min-Max scaling without changing 0 values



Power transformations
Some features follow certain distributions

E.g. number of twitter followers is log-normal distributed

Box-Cox transformations transform these to normal distributions (  is fitted)

Only works for positive values, use Yeo-Johnson otherwise

λ

bcλ(x) = {
log(x) λ = 0

λ ≠ 0
xλ−1

λ



Categorical feature encoding
Many algorithms can only handle numeric features, so we need to encode the categorical ones

boro salary vegan

0 Manhattan 103 0

1 Queens 89 0

2 Manhattan 142 0

3 Brooklyn 54 1

4 Brooklyn 63 1

5 Bronx 219 0



Ordinal encoding
Simply assigns an integer value to each category in the order they are encountered

Only really useful if there exist a natural order in categories

Model will consider one category to be 'higher' or 'closer' to another

boro boro_ordinal salary

0 Manhattan 2 103

1 Queens 3 89

2 Manhattan 2 142

3 Brooklyn 1 54

4 Brooklyn 1 63

5 Bronx 0 219



One-hot encoding (dummy encoding)
Simply adds a new 0/1 feature for every category, having 1 (hot) if the sample has that category

Can explode if a feature has lots of values, causing issues with high dimensionality

What if test set contains a new category not seen in training data?

Either ignore it (just use all 0's in row), or handle manually (e.g. resample)

boro boro_Bronx boro_Brooklyn boro_Manhattan boro_Queens salary

0 Manhattan 0 0 1 0 103

1 Queens 0 0 0 1 89

2 Manhattan 0 0 1 0 142

3 Brooklyn 0 1 0 0 54

4 Brooklyn 0 1 0 0 63

5 Bronx 1 0 0 0 219



Target encoding
Value close to 1 if category correlates with class 1, close to 0 if correlates with class 0

Preferred when you have lots of category values. It only creates one new feature per class

Blends posterior probability of the target  and prior probability .

: nr of samples with category i and class Y=1, : nr of samples with category i

Blending: gradually decrease as you get more examples of category i and class Y=0

Same for regression, using : average target value with category i, : overall mean
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Example

For Brooklyn, 

Would be closer to 1 if there were more examples, all with label 1

Note: the implementation used here sets  when 

boro boro_encoded salary vegan

0 Manhattan 0.089647 103 0

1 Queens 0.333333 89 0

2 Manhattan 0.089647 142 0

3 Brooklyn 0.820706 54 1

4 Brooklyn 0.820706 63 1

5 Bronx 0.333333 219 0

niY = 2,ni = 2,nY = 2,n = 6

Enc(Brooklyn) = + (1 − ) = 0, 82
1

1 + e−1

2

2

1

1 + e−1

2
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Enc(i) =
nY

n
niY = 1



In practice (scikit-learn)
Ordinal encoding and one-hot encoding are implemented in scikit-learn

dtype defines that the output should be an integer

Target encoding is available in category_encoders

scikit-learn compatible

Also includes other, very specific encoders

All encoders (and scalers) follow the fit-transform  paradigm

fit  prepares the encoder, transform  actually encodes the features

We'll discuss this next

ordinal_encoder = OrdinalEncoder(dtype=int) 
one_hot_encoder = OneHotEncoder(dtype=int) 

target_encoder = TargetEncoder(return_df=True)

encoder.fit(X, y) 
X_encoded = encoder.transform(X,y) 



Applying data transformations
Data transformations should always follow a fit-predict paradigm

Fit the transformer on the training data only

E.g. for a standard scaler: record the mean and standard deviation

Transform (e.g. scale) the training data, then train the learning model

Transform (e.g. scale) the test data, then evaluate the model

Only scale the input features (X), not the targets (y)

If you fit and transform the whole dataset before splitting, you get data leakage

You have looked at the test data before training the model

Model evaluations will be misleading

If you fit and transform the training and test data separately, you distort the data

E.g. training and test points are scaled differently



In practice (scikit-learn)
# choose scaling method and fit on training data 
scaler = StandardScaler() 
scaler.fit(X_train) 
 
# transform training and test data 
X_train_scaled = scaler.transform(X_train) 
X_test_scaled = scaler.transform(X_test) 

# calling fit and transform in sequence 
X_train_scaled = scaler.fit(X_train).transform(X_train) 
# same result, but more efficient computation 
X_train_scaled = scaler.fit_transform(X_train) 



Test set distortion
Properly scaled: fit  on training set, transform  on training and test set

Improperly scaled: fit  and transform  on the training and test data separately

Test data points nowhere near same training data points



Data leakage
Cross-validation: training set is split into training and validation sets for model selection

Incorrect: Scaler is fit on whole training set before doing cross-validation

Data leaks from validation folds into training folds, selected model may be optimistic

Right: Scaler is fit on training folds only



Pipelines
A pipeline is a combination of data transformation and learning algorithms

It has a fit , predict , and score  method, just like any other learning algorithm

Ensures that data transformations are applied correctly



In practice (scikit-learn)

A pipeline  combines multiple processing steps in a single estimator

All but the last step should be data transformer (have a transform  method)

# Make pipeline, step names will be 'minmaxscaler' and 'linearsvc' 
pipe = make_pipeline(MinMaxScaler(), LinearSVC())
# Build pipeline with named steps  
pipe = Pipeline([("scaler", MinMaxScaler()), ("svm", LinearSVC())]) 
 
# Correct fit and score 
score = pipe.fit(X_train, y_train).score(X_test, y_test) 
# Retrieve trained model by name 
svm = pipe.named_steps["svm"] 

# Correct cross-validation
scores = cross_val_score(pipe, X, y) 



If you want to apply different preprocessors to different columns, use ColumnTransformer

If you want to merge pipelines, you can use FeatureUnion  to concatenate columns

# 2 sub-pipelines, one for numeric features, other for categorical 
ones 
numeric_pipe = make_pipeline(SimpleImputer(),StandardScaler()) 
categorical_pipe = make_pipeline(SimpleImputer(),OneHotEncoder()) 
 
# Using categorical pipe for features A,B,C, numeric pipe otherwise 
preprocessor = make_column_transformer((categorical_pipe, 
                                        ["A","B","C"]),  
                                        remainder=numeric_pipe) 
 
# Combine with learning algorithm in another pipeline 
pipe = make_pipeline(preprocess, LinearSVC())

# Feature union of PCA features and selected features 
union = FeatureUnion([("pca", PCA()), ("selected", SelectKBest())])
pipe = make_pipeline(union, LinearSVC()) 



ColumnTransformer  concatenates features in order

pipe = make_column_transformer((StandardScaler(),numeric_features),  
                               (PCA(),numeric_features),   
                               
(OneHotEncoder(),categorical_features))



Pipeline selection

We can safely use pipelines in model selection (e.g. grid search)

Use '__'  to refer to the hyperparameters of a step, e.g. svm__C

# Correct grid search (can have hyperparameters of any step) 
param_grid = {'svm__C': [0.001, 0.01], 
              'svm__gamma': [0.001, 0.01, 0.1, 1, 10, 100]} 
grid = GridSearchCV(pipe, param_grid=param_grid).fit(X,y)
# Best estimator is now the best pipeline 
best_pipe = grid.best_estimator_ 
 
# Tune pipeline and evaluate on held-out test set 
grid = GridSearchCV(pipe, 
param_grid=param_grid).fit(X_train,y_train) 
grid.score(X_test,y_test) 



Example: Tune multiple steps at once

pipe = make_pipeline(StandardScaler(),PolynomialFeatures(), Ridge()) 
param_grid = {'polynomialfeatures__degree': [1, 2, 3], 
              'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100]} 
grid = GridSearchCV(pipe, param_grid=param_grid).fit(X_train, 
y_train) 



Automatic Feature Selection
It can be a good idea to reduce the number of features to only the most useful ones

Simpler models that generalize better (less overfitting)

Curse of dimensionality (e.g. kNN)

Even models such as RandomForest can benefit from this

Sometimes it is one of the main methods to improve models (e.g. gene expression data)

Faster prediction and training

Training time can be quadratic (or cubic) in number of features

Easier data collection, smaller models (less storage)

More interpretable models: fewer features to look at



Example: bike sharing
The Bike Sharing Demand dataset shows the amount of bikes rented in Washington DC

Some features are clearly more informative than others (e.g. temp, hour)

Some are correlated (e.g. temp and feel_temp)

We add two random features at the end



Unsupervised feature selection
Variance-based

Remove (near) constant features

Choose a small variance threshold

Scale features before computing variance!

Infrequent values may still be important

Covariance-based

Remove correlated features

The small differences may actually be important

You don't know because you don't consider the target



Covariance based feature selection

Remove features  (= ) that are highly correlated (have high correlation coefficient )

Should we remove feel_temp ? Or temp ? Maybe one correlates more with the target?

Xi X:,i ρ

ρ(X1,X2) = =
cov(X1,X2)

σ(X1)σ(X2)

∑i(Xi,1 −
¯̄¯̄¯̄¯
X1)(Xi,2 −

¯̄¯̄¯̄¯
X2)1

N−1

σ(X1)σ(X2)



Supervised feature selection: overview
Univariate: F-test and Mutual Information

Model-based: Random Forests, Linear models, kNN

Wrapping techniques (black-box search)

Permutation importance



Univariate statistics (F-test)
Consider each feature individually (univariate), independent of the model that you aim to apply

Use a statistical test: is there a linear statistically significant relationship with the target?

Use F-statistic (or corresponding p value) to rank all features, then select features using a threshold

Best , best  %, probability of removing useful features (FPR),...

Cannot detect correlations (e.g. temp and feel_temp) or interactions (e.g. binary features)

k k



F-statistic

For regression: does feature  correlate (positively or negatively) with the target ?

For classification: uses ANOVA: does  explain the between-class variance?

Alternatively, use the  test (only for categorical features)

Xi y

F-statistic = ⋅ (N − 1)
ρ(Xi, y)2

1 − ρ(Xi, y)2

Xi

χ2

F-statistic = =
within-class variance

between-class variance

var(
¯̄¯̄¯̄
Xi)

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
var(Xi)



Mutual information

Measures how much information  gives about the target . In terms of entropy :

Idea: estimate H(X) as the average distance between a data point and its  Nearest Neighbors

You need to choose  and say which features are categorical

Captures complex dependencies (e.g. hour, month), but requires more samples to be accurate

Xi Y H

MI(X,Y ) = H(X) + H(Y ) − H(X,Y )

k

k



Model-based Feature Selection
Use a (!) supervised model to judge the importance of each feature

Linear models (Ridge, Lasso, LinearSVM,...): features with highest weights (coefficients)

Tree–based models: features used in first nodes (high information gain)

Selection model can be different from the one you use for final modelling

Captures interactions: features are more/less informative in combination (e.g. winter, temp)

RandomForests: learns complex interactions (e.g. hour), but biased to high cardinality features

tuned

https://explained.ai/rf-importance/index.html


Relief: Model-based selection with kNN

For I iterations, choose a random point  and find  nearest neighbors 

Increase feature weights if  and  have different class (near miss), else decrease

Many variants: ReliefF (uses L1 norm, faster), RReliefF (for regression), ...

xi k xk

xi xk

wi = wi−1 + (xi − nearMissi)
2 − (xi − nearHiti)

2



Iterative Model-based Feature Selection

Dropping many features at once is not ideal: feature importance may change in subset

Recursive Feature Elimination (RFE)

Remove  least important feature(s), recompute remaining importances, repeat

Can be rather slow

s



Sequential feature selection (Wrapping)
Evaluate your model with different sets of features, find best subset based on performance

Greedy black-box search (can end up in local minima)

Backward selection: remove least important feature, recompute importances, repeat

Forward selection: set aside most important feature, recompute importances, repeat

Floating: add best new feature, remove worst one, repeat (forward or backward)

Stochastic search: use random mutations in candidate subset (e.g. simulated annealing)



Permutation feature importance
Defined as the decrease in model performance when a single feature value is randomly shuffled

This breaks the relationship between the feature and the target

Model agnostic, metric agnostic, and can be calculated many times with different permutations

Can be applied to unseen data (not possible with model-based techniques)

Less biased towards high-cardinality features (compared with RandomForests)



Comparison
Feature importances (scaled) and cross-validated  score of pipeline

Pipeline contains features selection + Ridge

Selection threshold value ranges from 25% to 100% of all features

Best method ultimately depends on the problem and dataset at hand

R2



In practice (scikit-learn)
Unsupervised: VarianceTreshold

Univariate:

For regression: f_regression , mutual_info_regression

For classification: f_classification , chi2 , mutual_info_classication

Selecting: SelectKBest , SelectPercentile , SelectFpr ,...

selector = VarianceThreshold(threshold=0.01) 
X_selected = selector.fit_transform(X)
variances = selector.variances_

selector = SelectPercentile(score_func=f_regression, percentile=50) 
X_selected = selector.fit_transform(X,y)
selected_features = selector.get_support() 
f_values, p_values = f_regression(X,y)
mi_values = mutual_info_regression(X,y,discrete_features=[]) 



Model-based:

SelectFromModel : requires a model and a selection threshold

RFE , RFECV  (recursive feature elimination): requires model and final nr features

Sequential feature selection (from mlxtend , sklearn-compatible)

Permutation Importance (in sklearn.inspection ), no fit-transform interface

selector = SelectFromModel(RandomForestRegressor(), 
threshold='mean') 
rfe_selector = RFE(RidgeCV(), n_features_to_select=20)
X_selected = selector.fit_transform(X)
rf_importances = Randomforest().fit(X, y).feature_importances_ 

selector = SequentialFeatureSelector(RidgeCV(), k_features=20, 
forward=True,  
                                     floating=True) 
X_selected = selector.fit_transform(X)

importances = 
permutation_importance(RandomForestRegressor().fit(X,y),  
                                     X, y, 
n_repeats=10).importances_mean
feature_ids = (-importances).argsort()[:n] 



Feature Engineering
Create new features based on existing ones

Polynomial features

Interaction features

Binning

Mainly useful for simple models (e.g. linear models)

Other models can learn interations themselves

But may be slower, less robust than linear models



Polynomials
Add all polynomials up to degree  and all products

Equivalent to polynomial basis expansions

d

[1,x1, . . . ,xp] → [1,x1, . . . ,xp,x2
1, . . . ,x2

p, . . . ,xdp,x1x2, . . . ,xp−1xp]



Binning
Partition numeric feature values into  intervals (bins)

Create  new one-hot features, 1 if original value falls in corresponding bin

Models different intervals differently (e.g. different age groups)

orig [-3.0,-1.5] [-1.5,0.0] [0.0,1.5] [1.5,3.0]

0 -0.752759 0.000000 1.000000 0.000000 0.000000

1 2.704286 0.000000 0.000000 0.000000 1.000000

2 1.391964 0.000000 0.000000 1.000000 0.000000

n

n



Binning + interaction features
Add interaction features (or product features )

Product of the bin encoding and the original feature value

Learn different weights per bin

orig b0 b1 b2 b3 X*b0 X*b1 X*b2 X*b3

0 -0.752759 0.000000 1.000000 0.000000 0.000000 -0.000000 -0.752759 -0.000000 -0.000000

1 2.704286 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 2.704286

2 1.391964 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.391964 0.000000



Categorical feature interactions
One-hot-encode categorical feature

Multiply every one-hot-encoded column with every numeric feature

Allows to built different submodels for different categories

gender age pageviews time

0 M 14 70 269

1 F 16 12 1522

2 M 12 42 235

3 F 25 64 63

4 F 22 93 21

age_M pageviews_M time_M gender_M_M age_F pageviews_F time_F gender_F_F

0 14 70 269 1 0 0 0 0

1 0 0 0 0 16 12 1522 1

2 12 42 235 1 0 0 0 0

3 0 0 0 0 25 64 63 1

4 0 0 0 0 22 93 21 1



Missing value imputation
Data can be missing in different ways:

Missing Completely at Random (MCAR): purely random points are missing

Missing at Random (MAR): something affects missingness, but no relation with the value

E.g. faulty sensors, some people don't fill out forms correctly

Missing Not At Random (MNAR): systematic missingness linked to the value

Has to be modelled or resolved (e.g. sensor decay, sick people leaving study)

Missingness can be encoded in different ways:'?', '-1', 'unknown', 'NA',...

Also labels can be missing (remove example or use semi-supervised learning)



Overview
Mean/constant imputation

kNN-based imputation

Iterative (model-based) imputation

Matrix Factorization techniques



Mean imputation
Replace all missing values of a feature by the same value

Numerical features: mean or median

Categorical features: most frequent category

Constant value, e.g. 0 or 'missing' for text features

Optional: add an indicator column for missingness

Example: Iris dataset (randomly removed values in 3rd and 4th column)



kNN imputation
Use special version of kNN to predict value of missing points

Uses only non-missing data when computing distances



Iterative (model-based) Imputation
Better known as Multiple Imputation by Chained Equations (MICE)

Iterative approach

Do first imputation (e.g. mean imputation)

Train model (e.g. RandomForest) to predict missing values of a given feature

Train new model on imputed data to predict missing values of the next feature

Repeat  times in round-robin fashion, leave one feature out at a timem



Matrix Factorization
Basic idea: low-rank approximation

Replace missing values by 0

Factorize  with rank : 

With n data points and p features

Solved using gradient descent

Recompute : now complete

X r Xn×p = Un×rVr×p

X



Soft-thresholded Singular Value Decomposition (SVD)
Same basic idea, but smoother

Replace missing values by 0, compute SVD: 

Solved with gradient descent

Reduce eigenvalues by shrinkage factor: 

Recompute : now complete

Repeat for  iterations

X = UΣVT

λi = s ⋅ λi
X

m



Comparison
Best method depends on the problem and dataset at hand. Use cross-validation.

Iterative Imputation (MICE) generally works well for missing (completely) at random data

Can be slow if the prediction model is slow

Low-rank approximation techniques scale well to large datasets



In practice (scikit-learn)
Simple replacement: SimpleImputer

Strategies: mean  (numeric), median , most_frequent  (categorical)

Choose whether to add indicator columns, and how missing values are encoded

kNN Imputation: KNNImputer

Multiple Imputation (MICE): IterativeImputer

Choose estimator (default: BayesianRidge ) and number of iterations (default 10)

imp = SimpleImputer(strategy='mean', missing_values=np.nan, 
add_indicator=False) 
X_complete = imp.fit_transform(X_train) 

imp = KNNImputer(n_neighbors=5) 
X_complete = imp.fit_transform(X_train) 

imp = IterativeImputer(estimator=RandomForestClassifier(), 
max_iter=10) 
X_complete = imp.fit_transform(X_train) 



In practice (fancyimpute)
Cannot be used in CV pipelines (has fit_transform  but no transform )

Soft-Thresholded SVD: SoftImpute

Choose max number of gradient descent iterations

Choose shrinkage value for eigenvectors (default: )

Low-rank imputation: MatrixFactorization

Choose rank of the low-rank approximation

Gradient descent hyperparameters: learning rate, epochs,...

Several variants exist

1
N

imp = SoftImpute(max_iter=10, shrinkage_value=None)
X_complete = imp.fit_transform(X) 

imp = MatrixFactorization(rank=10, learning_rate=0.001, 
epochs=10000) 
X_complete = imp.fit_transform(X) 



Handling imbalanced data
Problem:

You have a majority class with many times the number of examples as the minority class

Or: classes are balanced, but associated costs are not (e.g. FN are worse than FP)

We already covered some ways to resolve this:

Add class weights to the loss function: give the minority class more weight

In practice: set class_weight='balanced'

Change the prediction threshold to minimize false negatives or false positives

There are also things we can do by preprocessing the data

Resample the data to correct the imbalance

Random or model-based

Generate synthetic samples for the minority class

Build ensembles over different resampled datasets

Combinations of these



Random Undersampling
Copy the points from the minority class

Randomly sample from the majority class (with or without replacement) until balanced

Optionally, sample until a certain imbalance ratio (e.g. 1/5) is reached

Multi-class: repeat with every other class

Preferred for large datasets, often yields smaller/faster models with similar performance



Model-based Undersampling
Edited Nearest Neighbors

Remove all majority samples that are misclassified by kNN (mode) or that have a neighbor

from the other class (all).

Remove their influence on the minority samples

Condensed Nearest Neighbors

Remove all majority samples that are not misclassified by kNN

Focus on only the hard samples



Random Oversampling
Copy the points from the majority class

Randomly sample from the minority class, with replacement, until balanced

Optionally, sample until a certain imbalance ratio (e.g. 1/5) is reached

Makes models more expensive to train, doens't always improve performance

Similar to giving minority class(es) a higher weight (and more expensive)



Synthetic Minority Oversampling Technique (SMOTE)
Repeatedly choose a random minority point and a neighboring minority point

Pick a new, artificial point on the line between them (uniformly)

May bias the data. Be careful never to create artificial points in the test set.

ADASYN (Adaptive Synthetic)

Similar, but starts from 'hard' minority points (misclassified by kNN)



Combined techniques
Combines over- and under-sampling

E.g. oversampling with SMOTE, undersampling with Edited Nearest Neighbors (ENN)

SMOTE can generate 'noisy' point, close to majority class points

ENN will remove up these majority points to 'clean up' the space



Ensemble Resampling
Bagged ensemble of balanced base learners. Acts as a learner, not a preprocessor

BalancedBagging: take bootstraps, randomly undersample each, train models (e.g. trees)

Benefits of random undersampling without throwing out so much data

Easy Ensemble: take multiple random undersamplings directly, train models

Traditionally uses AdaBoost as base learner, but can be replaced



Comparison
The best method depends on the data (amount of data, imbalance,...)

For a very large dataset, random undersampling may be fine

You still need to choose the appropriate learning algorithms

Don't forget about class weighting and prediction thresholding

Some combinations are useful, e.g. SMOTE + class weighting + thresholding



In practice ( )
Follows fit-sample paradigm (equivalent of fit-transform, but also affects y)

Undersampling: RandomUnderSampler, EditedNearestNeighbours,...

(Synthetic) Oversampling: RandomOverSampler, SMOTE, ADASYN,...

Combinations: SMOTEENN,...

Can be used in imblearn pipelines (not sklearn pipelines)

imblearn pipelines are compatible with GridSearchCV,...

Sampling is only done in fit  (not in predict )

The ensembling techniques should be used as wrappers

imblearn

X_resampled, y_resampled = SMOTE(k_neighbors=5).fit_sample(X, y) 

smote_pipe = make_pipeline(SMOTE(), LogisticRegression()) 
scores = cross_validate(smote_pipe, X_train, y_train) 
param_grid = {"k_neighbors": [3,5,7]} 
grid = GridSearchCV(smote_pipe, param_grid=param_grid, X, y) 

clf = EasyEnsembleClassifier(base_estimator=SVC()).fit(X_train, 
y_train) 

http://imbalanced-learn.org/


Real-world data
The effect of sampling procedures can be unpredictable

Best method can depend on the data and FP/FN trade-offs

SMOTE and ensembling techniques often work well



Summary
Data preprocessing is a crucial part of machine learning

Scaling is important for many distance-based methods (e.g. kNN, SVM, Neural Nets)

Categorical encoding is necessary for numeric methods (or implementations)

Selecting features can speed up models and reduce overfitting

Feature engineering is often useful for linear models

It is often better to impute missing data than to remove data

Imbalanced datasets require extra care to build useful models

Pipelines allow us to encapsulate multiple steps in a convenient way

Avoids data leakage, crucial for proper evaluation

Choose the right preprocessing steps and models in your pipeline

Cross-validation helps, but the search space is huge

Smarter techniques exist to automate this process (AutoML)


