
Lecture 5. Ensemble Learning
Crowd intelligence

Joaquin Vanschoren

Ensemble learning
If different models make different mistakes, can we simply average the predictions?

Voting Classifier: gives every model a vote on the class label

Hard vote: majority class wins (class order breaks ties)

Soft vote: sum class probabilities over models:

Classes can get different weights (default:)

pm,c M argmax
c

∑M
m=1 wcpm,c

wc wc = 1

Why does this work?

Different models may be good at different 'parts' of data (even if they underfit)

Individual mistakes can be 'averaged out' (especially if models overfit)

Which models should be combined?

Bias-variance analysis teaches us that we have two options:

If model underfits (high bias, low variance): combine with other low-variance models

Need to be different: 'experts' on different parts of the data

Bias reduction. Can be done with Boosting

If model overfits (low bias, high variance): combine with other low-bias models

Need to be different: individual mistakes must be different

Variance reduction. Can be done with Bagging

Models must be uncorrelated but good enough (otherwise the ensemble is worse)

We can also learn how to combine the predictions of different models: Stacking

Decision trees (recap)
Representation: Tree that splits data points into leaves based on tests

Evaluation (loss): Heuristic for purity of leaves (Gini index, entropy,...)

Optimization: Recursive, heuristic greedy search (Hunt's algorithm)

Consider all splits (thresholds) between adjacent data points, for every feature

Choose the one that yields the purest leafs, repeat

Evaluation (loss function for classi�cation)
Every leaf predicts a class probability = the relative frequency of class

Leaf impurity measures (splitting criteria) for leafs, leaf has data :

Gini-Index:

Entropy (more expensive):

Best split maximizes information gain (idem for Gini index)

p̂c c

L l Xl

Gini(Xl) = ∑
c≠c′ p̂cp̂c′

E(Xl) = −∑c≠c′ p̂c log2 p̂c

Gain(X, Xi) = E(X) −
L

∑
l=1

E(Xi=l)
|Xi=l|

|Xi|

Regression trees
Every leaf predicts the mean target value of all points in that leaf

Choose the split that minimizes squared error of the leaves:

Yields non-smooth step-wise predictions, cannot extrapolate

μ

∑
xi∈L

(yi − μ)2

Impurity/Entropy-based feature importance
We can measure the importance of features (to the model) based on

Which features we split on

How high up in the tree we split on them (first splits ar emore important)

Under- and over�tting
We can easily control the (maximum) depth of the trees as a hyperparameter

Bias-variance analysis:

Shallow trees have high bias but very low variance (underfitting)

Deep trees have high variance but low bias (overfitting)

Because we can easily control their complexity, they are ideal for ensembling

Deep trees: keep low bias, reduce variance with Bagging

Shallow trees: keep low variance, reduce bias with Boosting

Bagging (Bootstrap Aggregating)
Obtain different models by training the same model on different training samples

Reduce overfitting by averaging out individual predictions (variance reduction)

In practice: take bootstrap samples of your data, train a model on each bootstrap

Higher : more models, more smoothing (but slower training and prediction)

Base models should be unstable: different training samples yield different models

E.g. very deep decision trees, or even randomized decision trees

Deep Neural Networks can also benefit from bagging (deep ensembles)

Prediction by averaging predictions of base models

Soft voting for classification (possibly weighted)

Mean value for regression

Can produce uncertainty estimates as well

By combining class probabilities of individual models (or variances for regression)

I

I

Random Forests
Uses randomized trees to make models even less correlated (more unstable)

At every split, only consider max_features features, randomly selected

Extremely randomized trees: considers 1 random threshold for random set of features (faster)

E�ect on bias and variance
Increasing the number of models (trees) decreases variance (less overfitting)

Bias is mostly unaffected, but will increase if the forest becomes too large (oversmoothing)

In practice

Different implementations can be used. E.g. in scikit-learn:

BaggingClassifier : Choose your own base model and sampling procedure

RandomForestClassifier : Default implementation, many options

ExtraTreesClassifier : Uses extremely randomized trees

Most important parameters:

n_estimators (>100, higher is better, but diminishing returns)

Will start to underfit (bias error component increases slightly)

max_features

Defaults: for classification, for regression

Set smaller to reduce space/time requirements

parameters of trees, e.g. max_depth , min_samples_split ,...

Prepruning useful to reduce model size, but don't overdo it

Easy to parallelize (set n_jobs to -1)

Fix random_state (bootstrap samples) for reproducibility

sqrt(p) log2(p)

Out-of-bag error
RandomForests don't need cross-validation: you can use the out-of-bag (OOB) error

For each tree grown, about 33% of samples are out-of-bag (OOB)

Remember which are OOB samples for every model, do voting over these

OOB error estimates are great to speed up model selection

As good as CV estimates, althought slightly pessimistic

In scikit-learn: oob_error = 1 - clf.oob_score_

Feature importance
RandomForests provide more reliable feature importances, based on many alternative hypotheses

(trees)

Other tips
Model calibration

RandomForests are poorly calibrated.

Calibrate afterwards (e.g. isotonic regression) if you aim to use probabilities

Warm starting

Given an ensemble trained for iterations, you can simply add more models later

You warm start from the existing model instead of re-starting from scratch

Can be useful to train models on new, closely related data

Not ideal if the data batches change over time (concept drift)

Boosting is more robust against this (see later)

I

Strength and weaknesses
RandomForest are among most widely used algorithms:

Don't require a lot of tuning

Typically very accurate

Handles heterogeneous features well (trees)

Implictly selects most relevant features

Downsides:

less interpretable, slower to train (but parallellizable)

don't work well on high dimensional sparse data (e.g. text)

Adaptive Boosting (AdaBoost)
Obtain different models by reweighting the training data every iteration

Reduce underfitting by focusing on the 'hard' training examples

Increase weights of instances misclassified by the ensemble, and vice versa

Base models should be simple so that different instance weights lead to different models

Underfitting models: decision stumps (or very shallow trees)

Each is an 'expert' on some parts of the data

Additive model: Predictions at iteration are sum of base model predictions

In Adaboost, also the models each get a unique weight

Adaboost minimizes exponential loss. For instance-weighted error :

By deriving you can find that optimal

I

wi

fI(x) =
I

∑
i=1

wigi(x)

ε

LExp =
N

∑
n=1

eε(fI(x))

∂L
∂wi

wi = log()1
2

1−ε
ε

AdaBoost algorithm
Initialize sample weights:

Build a model (e.g. decision stumps) using these sample weights

Give the model a weight related to its weighted error rate

Good trees get more weight than bad trees

Logit function maps error from [0,1] to weight in [-Inf,Inf] (use small minimum error)

Learning rate (shrinkage) decreases impact of individual classifiers

Small updates are often better but requires more iterations

Update the sample weights

Increase weight of incorrectly predicted samples:

Decrease weight of correctly predicted samples:

Normalize weights to add up to 1

Repeat for iterations

sn,0 = 1
N

wi ε

wi = λ log()
1 − ε

ε

ε

λ

sn,i+1 = sn,ie
wi

sn,i+1 = sn,ie
−wi

I

AdaBoost variants
Discrete Adaboost: error rate is simply the error rate (1-Accuracy)

Real Adaboost: is based on predicted class probabilities (better)

AdaBoost for regression: is either linear (), squared (), or exponential loss

GentleBoost: adds a bound on model weights

LogitBoost: Minimizes logistic loss instead of exponential loss

ε

ε p̂c

ε |yi − ŷ i| (yi − ŷ i)
2

wi

LLogistic =
N

∑
n=1

log(1 + eε(fI(x)))

Adaboost in action
Size of the samples represents sample weight

Background shows the latest tree's predictions

Examples

Bias-Variance analysis
AdaBoost reduces bias (and a little variance)

Boosting is a bias reduction technique

Boosting too much will eventually increase variance

Gradient Boosting
Ensemble of models, each fixing the remaining mistakes of the previous ones

Each iteration, the task is to predict the residual error of the ensemble

Additive model: Predictions at iteration are sum of base model predictions

Learning rate (or shrinkage) : small updates work better (reduces variance)

The pseudo-residuals are computed according to differentiable loss function

E.g. least squares loss for regression and log loss for classification

Gradient descent: predictions get updated step by step until convergence

Base models should be low variance, but flexible enough to predict residuals accurately

E.g. decision trees of depth 2-5

I

η

fI(x) = g0(x) +
I

∑
i=1

η ⋅ gi(x) = fI−1(x) + η ⋅ gI(x)

ri

gi(x) ≈ ri = −
∂L(yi, fi−1(xi))

∂fi−1(xi)

gi

Gradient Boosting Trees (Regression)
Base models are regression trees, loss function is square loss:

The pseudo-residuals are simply the prediction errors for every sample:

Initial model simply predicts the mean of

For iteration :

For all samples i=1..n, compute pseudo-residuals

Fit a new regression tree model to

In , each leaf predicts the mean of all its values

Update ensemble predictions

Early stopping (optional): stop when performance on validation set does not improve for
iterations

L = (yi − ŷ i)
21

2

ri = − = −2 ∗ (yi − ŷ i) ∗ (−1) = yi − ŷ i

∂L

∂ŷ

1

2

g0 y

m = 1..M

ri = yi − ŷ i

gm(x) ri

gm(x)

ŷ = g0(x) + ∑M
m=1 η ⋅ gm(x)

nr

Gradient Boosting Regression in action

Residuals quickly drop to (near) zero

GradientBoosting Algorithm (Classi�cation)
Base models are regression trees, predict probability of positive class

For multi-class problems, train one tree per class

Use (binary) log loss, with true class :

The pseudo-residuals are simply the difference between true class and predicted :

Initial model predicts

For iteration :

For all samples i=1..n, compute pseudo-residuals

Fit a new regression tree model to

In , each leaf predicts

Update ensemble predictions

Early stopping (optional): stop when performance on validation set does not improve for

iterations

p

yi ∈ 0, 1

Llog = −∑N
i=1 [yilog(pi) + (1 − yi)log(1 − pi)]

p

= = yi − pi

∂L

∂ŷ

∂L

∂log(pi)

g0 p = log()
#positives

#negatives

m = 1..M

ri = yi − pi

gm(x) ri

gm(x)
∑i ri

∑i pi(1−pi)

ŷ = g0(x) + ∑M
m=1 η ⋅ gm(x)

nr

Gradient Boosting Classi�cation in action

Size of the samples represents the residual weights: most quickly drop to (near) zero

Examples

Bias-variance analysis

Gradient Boosting is very effective at reducing bias error

Boosting too much will eventually increase variance

Feature importance

Gradient Boosting also provide feature importances, based on many trees

Compared to RandomForests, the trees are smaller, hence more features have zero importance

Gradient Boosting: strengths and weaknesses

Among the most powerful and widely used models

Work well on heterogeneous features and different scales

Typically better than random forests, but requires more tuning, longer training

Does not work well on high-dimensional sparse data

Main hyperparameters:

n_estimators : Higher is better, but will start to overfit

learning_rate : Lower rates mean more trees are needed to get more complex models

Set n_estimators as high as possible, then tune learning_rate

Or, choose a learning_rate and use early stopping to avoid overfitting

max_depth : typically kept low (<5), reduce when overfitting

max_features : can also be tuned, similar to random forests

n_iter_no_change : early stopping: algorithm stops if improvement is less than a certain

tolerance tol for more than n_iter_no_change iterations.

Extreme Gradient Boosting (XGBoost)
Faster version of gradient boosting: allows more iterations on larger datasets

Normal regression trees: split to minimize squared loss of leaf predictions

XGBoost trees only fit residuals: split so that residuals in leaf are more similar

Don't evaluate every split point, only quantiles per feature (binning)

 is hyperparameter (sketch_eps , default 0.03)

For large datasets, XGBoost uses approximate quantiles

Can be parallelized (multicore) by chunking the data and combining histograms of data

For classification, the quantiles are weighted by

Gradient descent sped up by using the second derivative of the loss function

Strong regularization by pre-pruning the trees

Column and row are randomly subsampled when computing splits

Support for out-of-core computation (data compression in RAM, sharding,...)

q

q

p(1 − p)

XGBoost in practice

Not part of scikit-learn, but HistGradientBoostingClassifier is similar

binning, multicore,...

The xgboost python package is sklearn-compatible

Install separately, conda install -c conda-forge xgboost

Allows learning curve plotting and warm-starting

Further reading:

XGBoost Documentation

Paper

Video

https://xgboost.readthedocs.io/en/latest/parameter.html#parameters-for-tree-booster
http://arxiv.org/abs/1603.02754
https://www.youtube.com/watch?v=oRrKeUCEbq8

LightGBM
Another fast boosting technique

Uses gradient-based sampling

use all instances with large gradients/residuals (e.g. 10% largest)

randomly sample instances with small gradients, ignore the rest

intuition: samples with small gradients are already well-trained.

requires adapted information gain criterion

Does smarter encoding of categorical features

CatBoost
Another fast boosting technique

Optimized for categorical variables

Uses bagged and smoothed version of target encoding

Uses symmetric trees: same split for all nodes on a given level aka

Can be much faster

Allows monotonicity constraints for numeric features

Model must be be a non-decreasing function of these features

Lots of tooling (e.g. GPU training)

Stacking
Choose different base-models, generate predictions

Stacker (meta-model) learns mapping between predictions and correct label

Can also be repeated: multi-level stacking

Popular stackers: linear models (fast) and gradient boosting (accurate)

Cascade stacking: adds base-model predictions as extra features

Models need to be sufficiently different, be experts at different parts of the data

Can be very accurate, but also very slow to predict

M

Other ensembling techniques
Hyper-ensembles: same basic model but with different hyperparameter settings

Can combine overfitted and underfitted models

Deep ensembles: ensembles of deep learning models

Bayes optimal classifier: ensemble of all possible models (largely theoretic)

Bayesian model averaging: weighted average of probabilistic models, weighted by their posterior

probabilities

Cross-validation selection: does internal cross-validation to select best of models

Any combination of different ensembling techniques

M

Algorithm overview

Name Representation Loss
function

Optimization Regularization

Classification trees Decision tree Entropy / Gini
index

Hunt's
algorithm

Tree depth,...

Regression trees Decision tree Square loss Hunt's
algorithm

Tree depth,...

RandomForest Ensemble of
randomized trees

Entropy / Gini
/ Square

(Bagging) Number/depth
of trees,...

AdaBoost Ensemble of stumps Exponential
loss

Greedy
search

Number/depth
of trees,...

GradientBoostingRegression Ensemble of
regression trees

Square loss Gradient
descent

Number/depth
of trees,...

GradientBoostingClassification Ensemble of
regression trees

Log loss Gradient
descent

Number/depth
of trees,...

XGBoost, LightGBM, CatBoost Ensemble of
XGBoost trees

Square/log
loss

2nd order
gradients

Number/depth
of trees,...

Stacking
Ensemble of
heterogeneous
models

/ /
Number of
models,...

Summary
Ensembles of voting classifiers improve performance

Which models to choose? Consider bias-variance tradeoffs!

Bagging / RandomForest is a variance-reduction technique

Build many high-variance (overfitting) models on random data samples

The more different the models, the better

Aggregation (soft voting) over many models reduces variance

Diminishing returns, over-smoothing may increase bias error

Parallellizes easily, doesn't require much tuning

Boosting is a bias-reduction technique

Build low-variance models that correct each other's mistakes

By reweighting misclassified samples: AdaBoost

By predicting the residual error: Gradient Boosting

Additive models: predictions are sum of base-model predictions

Can drive the error to zero, but risk overfitting

Doesn't parallelize easily. Slower to train, much faster to predict.

XGBoost,LightGBM,... are fast and offer some parallellization

Stacking: learn how to combine base-model predictions

Base-models still have to be sufficiently different

