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Evaluation

To know whether we can trust our method or system, we need to evaluate it.

Model selection: choose between different models in a data-driven way.

If you cannot measure it, you cannot improve it.

Convince others that your work is meaningful

Peers, leadership, clients, yourself(!)

When possible, try to interpret what your model has learned

The signal your model found may just be an artifact of your biased data

See 'Why Should I Trust You?' by Marco Ribeiro et al.



Designing Machine Learning systems

Just running your favourite algorithm is usually not a great way to start

Consider the problem: How to measure success? Are there costs involved?

Do you want to understand phenomena or do black box modelling?

Analyze your model's mistakes. Don't just finetune endlessly.

Build early prototypes. Should you collect more, or additional data?

Should the task be reformulated?

Overly complex machine learning systems are hard to maintain

See 'Machine Learning: The High Interest Credit Card of Technical Debt'



Real world evaluations

Evaluate predictions, but also how outcomes improve because of them

Beware of feedback loops: predictions can influence future input data

Medical recommendations, spam filtering, trading algorithms,...

Evaluate algorithms in the wild.

A/B testing: split users in groups, test different models in parallel

Bandit testing: gradually direct more users to the winning system



Performance estimation techniques

Always evaluate models as if they are predicting future data

We do not have access to future data, so we pretend that some data is hidden

Simplest way: the holdout (simple train-test split)

Randomly split data (and corresponding labels) into training and test set (e.g.

75%-25%)

Train (fit) a model on the training data, score on the test data



K-fold Cross-validation

Each random split can yield very different models (and scores)

e.g. all easy (of hard) examples could end up in the test set

Split data into k equal-sized parts, called folds

Create k splits, each time using a different fold as the test set

Compute k evaluation scores, aggregate afterwards (e.g. take the mean)

Examine the score variance to see how sensitive (unstable) models are

Large k gives better estimates (more training data), but is expensive



Can you explain this result?

kfold = KFold(n_splits=3)

cross_val_score(logistic_regression, iris.data, iris.target, cv=kfold)


Cross-validation scores KFold(n_splits=3):

[0. 0. 0.]




Stratified K-Fold cross-validation

If the data is unbalanced, some classes have only few samples

Likely that some classes are not present in the test set

Stratification: proportions between classes are conserved in each fold

Order examples per class

Separate the samples of each class in k sets (strata)

Combine corresponding strata into folds



Leave-One-Out cross-validation

k fold cross-validation with k equal to the number of samples

Completely unbiased (in terms of data splits), but computationally expensive

Actually generalizes less well towards unseen data

The training sets are correlated (overlap heavily)

Overfits on the data used for (the entire) evaluation

A different sample of the data can yield different results

Recommended only for small datasets



Shuffle-Split cross-validation

Shuffles the data, samples ( train_size ) points randomly as the training set

Can also use a smaller ( test_size ), handy with very large datasets

Never use if the data is ordered (e.g. time series)



The Bootstrap

Sample n (dataset size) data points, with replacement, as training set (the bootstrap)

On average, bootstraps include 66% of all data points (some are duplicates)

Use the unsampled (out-of-bootstrap) samples as the test set

Repeat  times to obtain  scores

Similar to Shuffle-Split with train_size=0.66 , test_size=0.34  but without

duplicates

k k



Repeated cross-validation

Cross-validation is still biased in that the initial split can be made in many ways

Repeated, or n-times-k-fold cross-validation:

Shuffle data randomly, do k-fold cross-validation

Repeat n times, yields n times k scores

Unbiased, very robust, but n times more expensive



Cross-validation with groups

Sometimes the data contains inherent groups:

Multiple samples from same patient, images from same person,...

Data from the same person may end up in the training and test set

We want to measure how well the model generalizes to other people

Make sure that data from one person are in either the train or test set

This is called grouping or blocking

Leave-one-subject-out cross-validation: test set for each subject/group



Time series

When the data is ordered, random test sets are not a good idea



Test-then-train (prequential evaluation)

Every new sample is evaluated only once, then added to the training set

Can also be done in batches (of n samples at a time)

TimeSeriesSplit

In the kth split, the first k folds are the train set and the (k+1)th fold as the test set

Often, a maximum training set size (or window) is used

more robust against concept drift (change in data over time)



Choosing a performance estimation procedure

No strict rules, only guidelines:
Always use stratification for classification (sklearn does this by default)

Use holdout for very large datasets (e.g. >1.000.000 examples)

Or when learners don't always converge (e.g. deep learning)

Choose k depending on dataset size and resources

Use leave-one-out for very small datasets (e.g. <100 examples)

Use cross-validation otherwise

Most popular (and theoretically sound): 10-fold CV

Literature suggests 5x2-fold CV is better

Use grouping or leave-one-subject-out for grouped data

Use train-then-test for time series



Evaluation Metrics for Classification

Evaluation vs Optimization

Each algorithm optimizes a given objective function (on the training data)

E.g. remember L2 loss in Ridge regression

The choice of function is limited by what can be efficiently optimized

However, we evaluate the resulting model with a score that makes sense in the real world

Percentage of correct predictions (on a test set)

The actual cost of mistakes (e.g. in money, time, lives,...)

We also tune the algorithm's hyperparameters to maximize that score

LRidge =
N

∑
n=1

(yn − (wxn + w0))2 + α

p

∑
i=0

w2
i



Binary classification

We have a positive and a negative class

2 different kind of errors:

False Positive (type I error): model predicts positive while true label is negative

False Negative (type II error): model predicts negative while true label is positive

They are not always equally important

Which side do you want to err on for a medical test?



Confusion matrices

We can represent all predictions (correct and incorrect) in a confusion matrix

n by n array (n is the number of classes)

Rows correspond to true classes, columns to predicted classes

Count how often samples belonging to a class C are classified as C or any other

class.

For binary classification, we label these true negative (TN), true positive (TP), false

negative (FN), false positive (FP)
Predicted Neg Predicted Pos

Actual Neg TN FP

Actual Pos FN TP

confusion_matrix(y_test, y_pred): 

 [[48  5]

 [ 5 85]]




Predictive accuracy

Accuracy can be computed based on the confusion matrix

Not useful if the dataset is very imbalanced

E.g. credit card fraud: is 99.99% accuracy good enough?

3 models: very different predictions, same accuracy:

Accuracy = (1)
TP + TN

TP + TN + FP + FN



Precision

Use when the goal is to limit FPs

Clinical trails: you only want to test drugs that really work

Search engines: you want to avoid bad search results

Precision = (2)
TP

TP + FP



Recall

Use when the goal is to limit FNs

Cancer diagnosis: you don't want to miss a serious disease

Search engines: You don't want to omit important hits

Also know as sensitivity, hit rate, true positive rate (TPR)

Recall = (3)
TP

TP + FN



Comparison



F1-score

Trades off precision and recall:

F1 = 2 ⋅ (4)
precision ⋅ recall

precision + recall



Classification measure Zoo

https://en.wikipedia.org/wiki/Precision_and_recall

https://en.wikipedia.org/wiki/Precision_and_recall


Multi-class classification

Train models per class : one class viewed as positive, other(s) als negative, then average

micro-averaging: count total TP, FP, TN, FN (every sample equally important)

micro-precision, micro-recall, micro-F1, accuracy are all the same

macro-averaging: average of scores  obtained on each class

Preferable for imbalanced classes (if all classes are equally important)

macro-averaged recall is also called balanced accuracy

weighted averaging ( : ratio of examples of class , aka support): 

Precision: −−→
∑C

c=1 TPc

∑C

c=1 TPc +∑C

c=1 FPc

c=2 TP + TN

TP + TN + FP + FN

R(yc, ŷc)

C

∑
c=1

R(yc, ŷc)
1

C

wc c

∑C

c=1 wcR(yc, ŷc)





Other useful classification metrics

Cohen's Kappa

Measures 'agreement' between different models (aka inter-rater agreement)

To evaluate a single model, compare it against a model that does random guessing

Similar to accuracy, but taking into account the possibility of predicting the

right class by chance

Can be weighted: different misclassifications given different weights

1: perfect prediction, 0: random prediction, negative: worse than random

With  = accuracy, and  = accuracy of random classifier:

Matthews correlation coefficient

Corrects for imbalanced data, alternative for balanced accuracy or AUROC

1: perfect prediction, 0: random prediction, -1: inverse prediction

p0 pe

κ =
po − pe

1 − pe

MCC =
tp × tn − fp × fn

√(tp + fp)(tp + fn)(tn + fp)(tn + fn)



Probabilistic evaluation

Classifiers can often provide uncertainty estimates of predictions.

Remember that linear models actually return a numeric value.

When , predict class -1, otherwise predict class +1

In practice, you are often interested in how certain a classifier is about each class prediction
(e.g. cancer treatments).
Most learning methods can return at least one measure of confidence in their predicions.

Decision function: floating point value for each sample (higher: more confident)

Probability: estimated probability for each class

ŷ < 0

ŷ = w0 ∗ x0 + w1 ∗ x1+. . . +wp ∗ xp + b



The decision function

In the binary classification case, the return value of the decision function encodes how strongly
the model believes a data point belongs to the “positive” class.

Positive values indicate preference for the positive class.

The range can be arbitrary, and can be affected by hyperparameters. Hard to interpret.



Predicting probabilities

Some models can also return a probability for each class with every prediction. These sum up
to 1.
We can visualize them again. Note that the gradient looks different now.



Threshold calibration

By default, we threshold at 0 for decision_function  and 0.5 for predict_proba

Depending on the application, you may want to threshold differently

Lower threshold yields fewer FN (better recall), more FP (worse precision), and

vice-versa



Precision-Recall curve

The best trade-off between precision and recall depends on your application

You can have arbitrary high recall, but you often want reasonable precision, too.

Plotting precision against recall for all possible thresholds yields a precision-recall curve

Change the treshold until you find a sweet spot in the precision-recall trade-off

Often jagged at high thresholds, when there are few positive examples left



Model selection

Some models can achieve trade-offs that others can't

Your application may require very high recall (or very high precision)

Choose the model that offers the best trade-off, given your application

The area under the PR curve (AUPRC) gives the best overall model



Hyperparameter effects

Of course, hyperparameters affect predictions and hence also the shape of the curve



Receiver Operating Characteristics (ROC)

Trade off true positive rate  with false positive rate

Plotting TPR against FPR for all possible thresholds yields a Receiver Operating

Characteristics curve

Change the treshold until you find a sweet spot in the TPR-FPR trade-off

Lower thresholds yield higher TPR (recall), higher FPR, and vice versa

TPR = TP

TP+FN
FPR = FP

FP+TN



Visualization

Histograms show the amount of points with a certain decision value (for each class)

 can be seen from the positive predictions (top histogram)

can be seen from the negative predictions (bottom histogram)

TPR = TP
TP+FN

FPR = FP
FP+TN



Model selection

Again, some models can achieve trade-offs that others can't

Your application may require minizing FPR (low FP), or maximizing TPR (low FN)

The area under the ROC curve (AUROC or AUC) gives the best overall model

Frequently used for evaluating models on imbalanced data

Random guessing (TPR=FPR) or predicting majority class (TPR=FPR=1): 0.5 AUC



Multi-class AUROC (or AUPRC)

We again need to choose between micro- or macro averaging TPR and FPR.

Micro-average if every sample is equally important (irrespective of class)

Macro-average if every class is equally important, especially for imbalanced data



Model calibration

For some models, the predicted uncertainty does not reflect the actual uncertainty

If a model is 90% sure that samples are positive, is it also 90% accurate on these?

A model is called calibrated if the reported uncertainty actually matches how correct it is

Overfitted models also tend to be over-confident

LogisticRegression models are well calibrated since they learn probabilities

SVMs are not well calibrated. Biased towards points close to the decision

boundary.



Brier score

You may want to select models based on how accurate the class confidences are.

The Brier score loss: squared loss between predicted probability  and actual outcome 

Lower is better

p̂ y

LBrier =
n

∑
i=1

(p̂ i − yi)
21

n

Logistic Regression Brier score loss: 0.0322

SVM Brier score loss: 0.0795




Model calibration techniques

We can post-process trained models to make them more calibrated.

Fit a regression model (a calibrator) to map the model's outcomes  to a calibrated

probability in [0,1]

 returns the decision values or probability estimates

 is fitted on the training data to map these to the correct outcome

Often an internal cross-validation with few folds is used

Multi-class models require one calibrator per class

f(x)

f(x)

fcalib

fcalib(f(x)) ≈ p(y)



Platt Scaling

Calibrator is a logistic (sigmoid) function:

Learn the weight  and bias  from dataw1 w0

fplatt =
1

1 + exp(−w1f(x) − w0)



Isotonic regression

Maps input  to an output  so that  increases monotonically with  and minimizes

loss 

Predictions are made by interpolating the predicted 

Fit to minimize the loss between the uncalibrated predictions  and the actual labels

Corrects any monotonic distortion, but tends to overfit on small samples

xi ŷ i ŷ i xi

∑n
i (yi − ŷ i)

ŷ i
f(x)



Cost-sensitive classification (dealing with imbalance)

In the real worlds, different kinds of misclassification can have different costs

Misclassifying certain classes can be more costly than others

Misclassifying certain samples can be more costly than others

Cost-sensitive resampling: resample (or reweight) the data to represent real-world

expectations

oversample minority classes (or undersample majority) to 'correct' imbalance

increase weight of misclassified samples (e.g. in boosting)

decrease weight of misclassified (noisy) samples (e.g. in model compression)



Class weighting

If some classes are more important than others, we can give them more weight

E.g. for imbalanced data, we can give more weight to minority classes

Most classification models can include it in their loss function and optimize for it

E.g. Logistic regression: add a class weight  in the log loss functionwc

Llog(w) = −
C

∑
c=1

wc

N

∑
n=1

pn,clog(qn,c)



Instance weighting

If some training instances are important to get right, we can give them more weight

E.g. when some examples are from groups underrepresented in the data

These are passed during training (fit), and included in the loss function

E.g. Logistic regression: add a instance weight  in the log loss functionwn

Llog(w) = −
C

∑
c=1

N

∑
n=1

wnpn,clog(qn,c)



Cost-sensitive algorithms

Cost-sensitive algorithms

If misclassification cost of some classes is higher, we can give them higher weights

Some support cost matrix : costs  for every possible type of error

Cost-sensitive ensembles: convert cost-insensitive classifiers into cost-sensitive ones

MetaCost: Build a model (ensemble) to learn the class probabilities 

Relabel training data to minimize expected cost: 

Accuracy may decrease but cost decreases as well.

AdaCost: Boosting with reweighting instances to reduce costs

C ci,j

P(j|x)

argmin
i

∑j Pj(x)ci,j



Tuning the decision threshold

If every FP or FN has a certain cost, we can compute the total cost for a given model:

This yields different isometrics (lines of equal cost) in ROC space

Optimal threshold is the point on the ROC curve where cost is minimal (line search)

total cost = FPR ∗ costFP ∗ ratiopos + (1 − TPR) ∗ costFN ∗ (1 − ratiopos)



Regression metrics
Most commonly used are

mean squared error: 

root mean squared error (RMSE) often used as well

mean absolute error: 

Less sensitive to outliers and large errors

∑i(ypredi−yactuali)
2

n

∑i |ypredi−yactuali |

n



R squared

Ratio of variation explained by the model / total variation

Between 0 and 1, but negative if the model is worse than just predicting the mean

Easier to interpret (higher is better).

R2 = 1 −
∑i(ypredi−yactuali)

2

∑i(ymean−yactuali)
2



Visualizing regression errors

Prediction plot (left): predicted vs actual target values

Residual plot (right): residuals vs actual target values

Over- and underpredictions can be given different costs





Bias-Variance decomposition

Evaluate the same algorithm multiple times on different random samples of the data

Two types of errors can be observed:

Bias error: systematic error, independent of the training sample

These points are predicted (equally) wrong every time

Variance error: error due to variability of the model w.r.t. the training sample

These points are sometimes predicted accurately, sometimes inaccurately



Computing bias and variance error

Take 100 or more bootstraps (or shuffle-splits)

Regression: for each data point x:

Classification: for each data point x:

 = misclassification ratio

 is ratio of class  predictions

Total bias: : the percentage of times  occurs in the test sets

Total variance: 

bias(x)2 = (xtrue − mean(xpredicted))2

variance(x) = var(xpredicted)

bias(x)
variance(x)

= (1 − (P(class1)2 + P(class2)2))/2

P(classi) i

∑x bias(x)2 ∗ wx wx x

∑x variance(x) ∗ wx



Bias and variance, underfitting and overfitting

High variance means that you are likely overfitting

Use more regularization or use a simpler model

High bias means that you are likely underfitting

Do less regularization or use a more flexible/complex model

Ensembling techniques (see later) reduce bias or variance directly

Bagging (e.g. RandomForests) reduces variance, Boosting reduces bias



Understanding under- and overfitting

Regularization reduces variance error (increases stability of predictions)

But too much increases bias error (inability to learn 'harder' points)

High regularization (left side): Underfitting, high bias error, low variance error

High training error and high test error

Low regularization (right side): Overfitting, low bias error, high variance error

Low training error and higher test error



Summary Flowchart (by Andrew Ng)



Hyperparameter tuning

There exists a huge range of techniques to tune hyperparameters. The simplest:

Grid search: Choose a range of values for every hyperparameter, try every

combination

Doesn't scale to many hyperparameters (combinatorial explosion)

Random search: Choose random values for all hyperparameters, iterate  times

Better, especially when some hyperparameters are less important

Many more advanced techniques exist, see lecture on Automated Machine Learning

n



First, split the data in training and test sets (outer split)

Split up the training data again (inner cross-validation)

Generate hyperparameter configurations (e.g. random/grid search)

Evaluate all configurations on all inner splits, select the best one (on average)

Retrain best configurations on full training set, evaluate on held-out test data



Nested cross-validation

Simplest approach: single outer split and single inner split (shown below)

Risk of over-tuning hyperparameters on specific train-test split

Only recommended for very large datasets

Nested cross-validation:

Outer loop: split full dataset in  training and test splits

Inner loop: split training data into  train and validation sets

This yields  scores for  possibly different hyperparameter settings

Average score is the expected performance of the tuned model

To use the model in practice, retune on the entire dataset

k1

k2

k1 k1

hps = {'C': expon(scale=100), 'gamma': expon(scale=.1)}

scores = cross_val_score(RandomizedSearchCV(SVC(), hps, cv=3), X, y, cv=5)




Summary

Split the data into training and test sets according to the application

Holdout only for large datasets, cross-validation for smaller ones

For classification, always use stratification

Grouped or ordered data requires special splitting

Choose a metric that fits your application

E.g. precision to avoid false positives, recall to avoid false negatives

Calibrate the decision threshold to fit your application

ROC curves or Precision-Recall curves can help to find a good tradeoff

If possible, include the actual or relative costs of misclassifications

Class weighting, instance weighting, ROC isometrics can help

Be careful with imbalanced or unrepresentative datasets

When using the predicted probabilities in applications, calibrate the models

Always tune the most important hyperparameters

Manual tuning: Use insight and train-test scores for guidance

Hyperparameter optimization: be careful not to over-tune


