Lecture 3: Kernelization

Making linear models non-linear
Joaquin Vanschoren

Feature Maps

- Linear models: $\hat{y}=\mathbf{w} \mathbf{x}+w_{0}=\sum_{i=1}^{p} w_{i} x_{i}+w_{0}=w_{0}+w_{1} x_{1}+\ldots+w_{p} x_{p}$
- When we cannot fit the data well, we can add non-linear transformations of the features
- Feature map (or basis expansion) $\phi: X \rightarrow \mathbb{R}^{d}$

$$
y=\mathbf{w}^{T} \mathbf{x} \rightarrow y=\mathbf{w}^{T} \phi(\mathbf{x})
$$

- E.g. Polynomial feature map: all polynomials up to degree d and all products

$$
\left[1, x_{1}, \ldots, x_{p}\right] \xrightarrow{\phi}\left[1, x_{1}, \ldots, x_{p}, x_{1}^{2}, \ldots, x_{p}^{2}, \ldots, x_{p}^{d}, x_{1} x_{2}, \ldots, x_{p-1} x_{p}\right]
$$

- Example with $p=1, d=3$:

$$
y=w_{0}+w_{1} x_{1} \xrightarrow{\phi} y=w_{0}+w_{1} x_{1}+w_{2} x_{1}^{2}+w_{3} x_{1}^{3}
$$

Ridge regression example

Weights: [0.418]

- Add all polynomials x^{d} up to degree 10 and fit again:
- e.g. use sklearn PolynomialFeatures

	x0	x0^2	x0^3	x0^4	x0^5	x0^6	x0^7	x0^8
0	-0.752759	0.566647	-0.426548	0.321088	-0.241702	0.181944	-0.136960	0.103098
1	2.704286	7.313162	19.776880	53.482337	144.631526	391.124988	1057.713767	$2860.360362 \quad 77$
2	1.391964	1.937563	2.697017	3.754150	5.225640	7.273901	10.125005	14.093639
3	0.591951	0.350406	0.207423	0.122784	0.072682	0.043024	0.025468	0.015076
4	-2.063888	. 259634	-8.791409	18.144485	-37.448187	77.288869	-159.515582	329.222321

Weights: $\left[\begin{array}{llllllllllll}0.643 & 0.297 & -0.69 & -0.264 & 0.41 & 0.096 & -0.076 & -0.014 & 0.004 & 0.001\end{array}\right]$

How expensive is this?

- You may need MANY dimensions to fit the data
- Memory and computational cost
- More weights to learn, more likely overfitting
- Ridge has a closed-form solution which we can compute with linear algebra:

$$
w^{*}=\left(X^{T} X+\alpha I\right)^{-1} X^{T} Y
$$

- Since X has n rows (examples), and d columns (features), $X^{T} X$ has dimensionality $d x d$
- Hence Ridge is quadratic in the number of features, $\mathcal{O}\left(d^{2} n\right)$
- After the feature map Φ, we get

$$
w^{*}=\left(\Phi(X)^{T} \Phi(X)+\alpha I\right)^{-1} \Phi(X)^{T} Y
$$

- Since Φ increases d a lot, $\Phi(X)^{T} \Phi(X)$ becomes huge

Linear SVM example (classification)

We can add a new feature by taking the squares of feature1 values

Now we can fit a linear model

As a function of the original features, the decision boundary is now a polynomial as well

$$
y=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{2}^{2}>0
$$

The kernel trick

- Computations in explicit, high-dimensional feature maps are expensive
- For some feature maps, we can, however, compute distances between points cheaply
- Without explicitly constructing the high-dimensional space at all
- Example: quadratic feature map for $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)$:

$$
\Phi(\mathbf{x})=\left(x_{1}, \ldots, x_{p}, x_{1}^{2}, \ldots, x_{p}^{2}, \sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{p-1} x_{p}\right)
$$

- A kernel function exists for this feature map to compute dot products

$$
k_{\text {quad }}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\Phi\left(\mathbf{x}_{\mathbf{i}}\right) \cdot \Phi\left(\mathbf{x}_{\mathbf{j}}\right)=\mathbf{x}_{\mathbf{i}} \cdot \mathbf{x}_{\mathbf{j}}+\left(\mathbf{x}_{\mathbf{i}} \cdot \mathbf{x}_{\mathbf{j}}\right)^{2}
$$

- Skip computation of $\Phi\left(x_{i}\right)$ and $\Phi\left(x_{j}\right)$ and compute $k\left(x_{i}, x_{j}\right)$ directly

Kernelization

- Kernel k corresponding to a feature map $\Phi: k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\Phi\left(\mathbf{x}_{\mathbf{i}}\right) \cdot \Phi\left(\mathbf{x}_{\mathbf{j}}\right)$
- Computes dot product between x_{i}, x_{j} in a high-dimensional space \mathcal{H}
- Kernels are sometimes called generalized dot products
- \mathcal{H} is called the reproducing kernel Hilbert space (RKHS)
- The dot product is a measure of the similarity between x_{i}, x_{j}
- Hence, a kernel can be seen as a similarity measure for high-dimensional spaces
- If we have a loss function based on dot products $\mathbf{x}_{\mathbf{i}} \cdot \mathbf{x}_{\mathbf{j}}$ it can be kernelized
- Simply replace the dot products with $k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)$

Low-dimensional space
High-dimensional space (RKHS)

Example: SVMs

- Linear SVMs (dual form, for l support vectors with dual coefficients a_{i} and classes y_{i}):

$$
\mathcal{L}_{\text {Dual }}\left(a_{i}\right)=\sum_{i=1}^{l} a_{i}-\frac{1}{2} \sum_{i, j=1}^{l} a_{i} a_{j} y_{i} y_{j}\left(\mathbf{x}_{\mathbf{i}} \cdot \mathbf{x}_{\mathbf{j}}\right)
$$

- Kernelized SVM, using any existing kernel k we want:

$$
\mathcal{L}_{\text {Dual }}\left(a_{i}, k\right)=\sum_{i=1}^{l} a_{i}-\frac{1}{2} \sum_{i, j=1}^{l} a_{i} a_{j} y_{i} y_{j} k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)
$$

Which kernels exist?

- A (Mercer) kernel is any function $k: X \times X \rightarrow \mathbb{R}$ with these properties:
- Symmetry: $k\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)=k\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{1}}\right) \forall \mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}} \in X$
- Positive definite: the kernel matrix K is positive semi-definite
- Intuitively, $k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \geq 0$
- The kernel matrix (or Gram matrix) for n points of $x_{1}, \ldots, x_{n} \in X$ is defined as:

$$
K=X X^{T}=\left[\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{n}}\right) \\
\vdots & \ddots & \vdots \\
k\left(\mathbf{x}_{\mathbf{n}}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{\mathbf{n}}, \mathbf{x}_{\mathbf{n}}\right)
\end{array}\right]
$$

- Once computed $\left(\mathcal{O}\left(n^{2}\right)\right)$, simply lookup $k\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)$ for any two points
- In practice, you can either supply a kernel function or precompute the kernel matrix

Linear kernel

- Input space is same as output space: $X=\mathcal{H}=\mathbb{R}^{d}$
- Feature map $\Phi(\mathbf{x})=\mathbf{x}$
- Kernel: $k_{\text {linear }}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\mathbf{x}_{\mathbf{i}} \cdot \mathbf{x}_{\mathbf{j}}$
- Geometrically, the dot product is the projection of $\mathbf{x}_{\mathbf{j}}$ on hyperplane defined by $\mathbf{x}_{\mathbf{i}}$
- Becomes larger if $\mathbf{x}_{\mathbf{i}}$ and $\mathbf{x}_{\mathbf{j}}$ are in the same 'direction'

- Linear kernel between point $(0,1)$ and another unit vector an angle a (in radians)
- Points with similar angles are deemed similar

angle $(-\pi, \pi)$ between unit vectors x_{1} and x_{2}

Polynomial kernel

- If k_{1}, k_{2} are kernels, then λ. $k_{1}(\lambda \geq 0), k_{1}+k_{2}$, and k_{1}. k_{2} are also kernels
- The polynomial kernel (for degree $d \in \mathbb{N}$) reproduces the polynomial feature map
- γ is a scaling hyperparameter (default $\frac{1}{p}$)
- c_{0} is a hyperparameter (default 1) to trade off influence of higher-order terms

$$
k_{\text {poly }}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)=\left(\gamma\left(\mathbf{x}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{2}}\right)+c_{0}\right)^{d}
$$

angle $(-\pi, \pi)$ between unit vectors x_{1} and x_{2}

RBF (Gaussian) kernel

- The Radial Basis Function (RBF) feature map builds the Taylor series expansion of e^{x}

$$
\Phi(x)=e^{-x^{2} / 2 \gamma^{2}}\left[1, \sqrt{\frac{1}{1!\gamma^{2}}} x, \sqrt{\frac{1}{2!\gamma^{4}}} x^{2}, \sqrt{\frac{1}{3!\gamma^{6}}} x^{3}, \ldots\right]^{T}
$$

- RBF (or Gaussian) kernel with kernel width $\gamma \geq 0$:

$$
k_{R B F}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(-\gamma\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|^{2}\right)
$$

- The RBF kernel $k_{R B F}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(-\gamma\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|^{2}\right)$ does not use a dot product
- It only considers the distance between \mathbf{x}_{1} and $\mathbf{x}_{\mathbf{2}}$
- It's a local kernel : every data point only influences data points nearby
- linear and polynomial kernels are global : every point affects the whole space
- Similarity depends on closeness of points and kernel width
- value goes up for closer points and wider kernels (larger overlap)

Kernelized SVMs in practice

- You can use SVMs with any kernel to learn non-linear decision boundaries

SVM with RBF kernel

- Every support vector locally influences predictions, according to kernel width (γ)
- The prediction for test point \mathbf{u} : sum of the remaining influence of each support vector
- $f(x)=\sum_{i=1}^{l} a_{i} y_{i} k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{u}\right)$

Tuning RBF SVMs

- gamma (kernel width)
- high values cause narrow Gaussians, more support vectors, overfitting
- Iow values cause wide Gaussians, underfitting
- C (cost of margin violations)
- high values punish margin violations, cause narrow margins, overfitting
- low values cause wider margins, more support vectors, underfitting
kernel $=$ rbf, $\gamma=0.1, \mathrm{C}=0.001$ kernel $=$ rbf, $\gamma=1, \mathrm{C}=0.001$
kernel $=$ rbf, $\gamma=0.1, \mathrm{C}=1$

kernel $=r b f, \gamma=0.1, \mathrm{C}=100$

kernel $=$ rbf, $\gamma=1, \mathrm{C}=1$

kernel $=r b f, \gamma=1, \mathrm{C}=100$

kernel $=$ rbf, $\gamma=5, \mathrm{C}=0.001$

kernel $=$ rbf, $\gamma=5, \mathrm{C}=1$

kernel $=r b f, \gamma=5, \mathrm{C}=100$

Kernel overview

SVMs in practice

- C and gamma always need to be tuned
- Interacting regularizers. Find a good C, then finetune gamma
- SVMs expect all features to be approximately on the same scale
- Data needs to be scaled beforehand
- Allow to learn complex decision boundaries, even with few features
- Work well on both low- and high dimensional data
- Especially good at small, high-dimensional data
- Hard to inspect, although support vectors can be inspected
- In sklearn, you can use SVC for classification with a range of kernels
- SVR for regression

Other kernels

- There are many more possible kernels
- If no kernel function exists, we can still precompute the kernel matrix
- All you need is some similarity measure, and you can use SVMs
- Text kernels:
- Word kernels: build a bag-of-words representation of the text (e.g. TFIDF)
- Kernel is the inner product between these vectors
- Subsequence kernels: sequences are similar if they share many sub-sequences
- Build a kernel matrix based on pairwise similarities
- Graph kernels: Same idea (e.g. find common subgraphs to measure similarity)
- These days, deep learning embeddings are more frequently used

The Representer Theorem

- We can kernelize many other loss functions as well
- The Representer Theorem states that if we have a loss function \mathcal{L}^{\prime} with
- \mathcal{L} an arbitrary loss function using some function f of the inputs \mathbf{x}
- \mathcal{R} a (non-decreasing) regularization score (e.g. L1 or L2) and constant λ

$$
\mathcal{L}^{\prime}(\mathbf{w})=\mathcal{L}(y, f(\mathbf{x}))+\lambda \mathcal{R}(\|\mathbf{w}\|)
$$

- Then the weights \mathbf{w} can be described as a linear combination of the training samples:

$$
\mathbf{w}=\sum_{i=1}^{n} a_{i} y_{i} f\left(\mathbf{x}_{\mathbf{i}}\right)
$$

- Note that this is exactly what we found for SVMs: $\mathbf{w}=\sum_{i=1}^{l} a_{i} y_{i} \mathbf{x}_{\mathbf{i}}$
- Hence, we can also kernelize Ridge regression, Logistic regression, Perceptrons, Support Vector Regression, ...

Kernelized Ridge regression

- The linear Ridge regression loss (with $\mathbf{x}_{\mathbf{0}}=1$):

$$
\mathcal{L}_{\text {Ridge }}(\mathbf{w})=\sum_{i=0}^{n}\left(y_{i}-\mathbf{w} \mathbf{x}_{\mathbf{i}}\right)^{2}+\lambda\|w\|^{2}
$$

- Filling in $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}}$ yields the dual formulation:

$$
\mathcal{L}_{\text {Ridge }}(\mathbf{w})=\sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{j}}\right)^{2}+\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{j}}
$$

- Generalize $\mathbf{x}_{\mathbf{i}} \cdot \mathbf{x}_{\mathbf{j}}$ to $k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)$

$$
\mathcal{L}_{\text {KernelRidge }}(\alpha, k)=\sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j} y_{j} k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{n}}\right)\right)^{2}+\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)
$$

Example of kernelized Ridge

- Prediction (red) is now a linear combination of kernels (blue): $y=\sum_{j=1}^{n} \alpha_{j} y_{j} k\left(\mathbf{x}, \mathbf{x}_{\mathbf{j}}\right)$
- We learn a dual coefficient for each point

- Fitting our regression data with KernelRidge

Other kernelized methods

- Same procedure can be done for logistic regression
- For perceptrons, $\alpha \rightarrow \alpha+1$ after every misclassification

$$
\mathcal{L}_{\text {DualPerceptron }}\left(x_{i}, k\right)=\max \left(0, y_{i} \sum_{j=1}^{n} \alpha_{j} y_{j} k\left(\mathbf{x}_{\mathbf{j}}, \mathbf{x}_{\mathbf{i}}\right)\right)
$$

- Support Vector Regression behaves similarly to Kernel Ridge

Summary

- Feature maps $\Phi(x)$ transform features to create a higher-dimensional space
- Allows learning non-linear functions or boundaries, but very expensive/slow
- For some $\Phi(x)$, we can compute dot products without constructing this space
- Kernel trick: $k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\Phi\left(\mathbf{x}_{\mathbf{i}}\right) \cdot \Phi\left(\mathbf{x}_{\mathbf{j}}\right)$
- Kernel k (generalized dot product) is a measure of similarity between $\mathbf{x}_{\mathbf{i}}$ and $\mathbf{x}_{\mathbf{j}}$
- There are many such kernels
- Polynomial kernel: $k_{\text {poly }}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)=\left(\gamma\left(\mathbf{x}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{2}}\right)+c_{0}\right)^{d}$
- RBF (Gaussian) kernel: $k_{R B F}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(-\gamma\left\|\mathbf{x}_{1}-\mathbf{x}_{\mathbf{2}}\right\|^{2}\right)$
- A kernel matrix can be precomputed using any similarity measure (e.g. for text, graphs,...)
- Any loss function where inputs appear only as dot products can be kernelized
- E.g. Linear SVMs: simply replace the dot product with a kernel of choice
- The Representer theorem states which other loss functions can also be kernelized and how
- Ridge regression, Logistic regression, Perceptrons,...

