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Feature Maps
Linear models: 

When we cannot fit the data well, we can add non-linear transformations of the features

Feature map (or basis expansion )  : 

E.g. Polynomial feature map: all polynomials up to degree  and all products

Example with  :

ŷ = wx + w0 = ∑
p
i=1 wixi + w0 = w0 + w1x1+. . . +wpxp

ϕ X → R
d

y = wTx → y = wTϕ(x)

d

[1,x1, . . . ,xp] → [1,x1, . . . ,xp,x2
1, . . . ,x2

p, . . . ,xdp,x1x2, . . . ,xp−1xp]
ϕ

p = 1, d = 3

y = w0 + w1x1 → y = w0 + w1x1 + w2x
2
1 + w3x

3
1

ϕ



Ridge regression example

Weights: [0.418] 



Add all polynomials  up to degree 10 and fit again:

e.g. use sklearn PolynomialFeatures

x0 x0^2 x0^3 x0^4 x0^5 x0^6 x0^7 x0^8

0 -0.752759 0.566647 -0.426548 0.321088 -0.241702 0.181944 -0.136960 0.103098

1 2.704286 7.313162 19.776880 53.482337 144.631526 391.124988 1057.713767 2860.360362 77

2 1.391964 1.937563 2.697017 3.754150 5.225640 7.273901 10.125005 14.093639

3 0.591951 0.350406 0.207423 0.122784 0.072682 0.043024 0.025468 0.015076

4 -2.063888 4.259634 -8.791409 18.144485 -37.448187 77.288869 -159.515582 329.222321 -67

xd

Weights: [ 0.643  0.297 -0.69  -0.264  0.41   0.096 -0.076 -0.014  0.004  0.001] 



How expensive is this?

You may need MANY dimensions to fit the data

Memory and computational cost

More weights to learn, more likely overfitting

Ridge has a closed-form solution which we can compute with linear algebra:

Since X has  rows (examples), and  columns (features),  has dimensionality 

Hence Ridge is quadratic in the number of features, 

After the feature map , we get

Since  increases  a lot,  becomes huge

w∗ = (XTX + αI)−1XTY

n d XTX dxd

O(d2n)

Φ

w∗ = (Φ(X)TΦ(X) + αI)−1Φ(X)TY

Φ d Φ(X)TΦ(X)



Linear SVM example (classi�cation)



We can add a new feature by taking the squares of feature1 values



Now we can fit a linear model



As a function of the original features, the decision boundary is now a polynomial as well

y = w0 + w1x1 + w2x2 + w3x
2
2 > 0



The kernel trick
Computations in explicit, high-dimensional feature maps are expensive

For some feature maps, we can, however, compute distances between points cheaply

Without explicitly constructing the high-dimensional space at all

Example: quadratic feature map for :

A kernel function exists for this feature map to compute dot products

Skip computation of  and  and compute  directly

x = (x1, . . . ,xp)

Φ(x) = (x1, . . . ,xp,x2
1, . . . ,x2

p, √2x1x2, . . . , √2xp−1xp)

kquad(xi, xj) = Φ(xi) ⋅ Φ(xj) = xi ⋅ xj + (xi ⋅ xj)
2

Φ(xi) Φ(xj) k(xi,xj)



Kernelization
Kernel  corresponding to a feature map : 

Computes dot product between  in a high-dimensional space 

Kernels are sometimes called generalized dot products

 is called the reproducing kernel Hilbert space (RKHS)

The dot product is a measure of the similarity between 

Hence, a kernel can be seen as a similarity measure for high-dimensional spaces

If we have a loss function based on dot products  it can be kernelized

Simply replace the dot products with 

k Φ k(xi, xj) = Φ(xi) ⋅ Φ(xj)
xi,xj H

H

xi,xj

xi ⋅ xj

k(xi, xj)



Example: SVMs
Linear SVMs (dual form, for  support vectors with dual coefficients  and classes ):

Kernelized SVM, using any existing kernel  we want:

l ai yi

LDual(ai) =
l

∑
i=1

ai −
l

∑
i,j=1

aiajyiyj(xi. xj)
1
2

k

LDual(ai, k) =
l

∑
i=1

ai −
l

∑
i,j=1

aiajyiyjk(xi, xj)
1
2



Which kernels exist?

A (Mercer) kernel is any function  with these properties:

Symmetry: 

Positive definite: the kernel matrix  is positive semi-definite

Intuitively, 

The kernel matrix (or Gram matrix) for  points of  is defined as:

Once computed ( ), simply lookup  for any two points

In practice, you can either supply a kernel function or precompute the kernel matrix

k : X × X → R

k(x1, x2) = k(x2, x1) ∀x1, x2 ∈ X

K

k(x1, x2) ≥ 0

n x1, . . . ,xn ∈ X

K = XXT =
⎡
⎢ ⎢
⎣

k(x1, x1) … k(x1, xn)

⋮ ⋱ ⋮
k(xn, x1) … k(xn, xn)

⎤
⎥ ⎥
⎦

O(n2) k(x1, x2)



Linear kernel
Input space is same as output space: 

Feature map 

Kernel: 

Geometrically, the dot product is the projection of  on hyperplane defined by 

Becomes larger if  and  are in the same 'direction'

X = H = R
d

Φ(x) = x

klinear(xi, xj) = xi ⋅ xj

xj xi

xi xj



Linear kernel between point (0,1) and another unit vector an angle  (in radians)

Points with similar angles are deemed similar

a



Polynomial kernel
If ,  are kernels, then  ( ), , and  are also kernels

The polynomial kernel (for degree ) reproduces the polynomial feature map

 is a scaling hyperparameter (default )

 is a hyperparameter (default 1) to trade off influence of higher-order terms

k1 k2 λ. k1 λ ≥ 0 k1 + k2 k1. k2

d ∈ N

γ 1
p

c0

kpoly(x1, x2) = (γ(x1 ⋅ x2) + c0)d



RBF (Gaussian) kernel

The Radial Basis Function (RBF) feature map builds the Taylor series expansion of 

RBF (or Gaussian ) kernel with kernel width :

ex

Φ(x) = e−x2/2γ2
[1, √ x, √ x2, √ x3, … ]

T1
1!γ2

1
2!γ4

1
3!γ6

γ ≥ 0

kRBF (x1, x2) = exp(−γ||x1 − x2||2)



The RBF kernel  does not use a dot product

It only considers the distance between  and 

It's a local kernel : every data point only influences data points nearby

linear and polynomial kernels are global : every point affects the whole space

Similarity depends on closeness of points and kernel width

value goes up for closer points and wider kernels (larger overlap)

kRBF (x1, x2) = exp(−γ||x1 − x2||2)
x1 x2



Kernelized SVMs in practice
You can use SVMs with any kernel to learn non-linear decision boundaries



SVM with RBF kernel
Every support vector locally influences predictions, according to kernel width ( )

The prediction for test point : sum of the remaining influence of each support vector

γ

u

f(x) = ∑
l
i=1 aiyik(xi, u)



Tuning RBF SVMs
gamma (kernel width)

high values cause narrow Gaussians, more support vectors, overfitting

low values cause wide Gaussians, underfitting

C (cost of margin violations)

high values punish margin violations, cause narrow margins, overfitting

low values cause wider margins, more support vectors, underfitting







Kernel overview



SVMs in practice
C and gamma always need to be tuned

Interacting regularizers. Find a good C, then finetune gamma

SVMs expect all features to be approximately on the same scale

Data needs to be scaled beforehand

Allow to learn complex decision boundaries, even with few features

Work well on both low- and high dimensional data

Especially good at small, high-dimensional data

Hard to inspect, although support vectors can be inspected

In sklearn, you can use SVC  for classification with a range of kernels

SVR  for regression



Other kernels
There are many more possible kernels

If no kernel function exists, we can still precompute the kernel matrix

All you need is some similarity measure, and you can use SVMs

Text kernels:

Word kernels: build a bag-of-words representation of the text (e.g. TFIDF)

Kernel is the inner product between these vectors

Subsequence kernels: sequences are similar if they share many sub-sequences

Build a kernel matrix based on pairwise similarities

Graph kernels: Same idea (e.g. find common subgraphs to measure similarity)

These days, deep learning embeddings are more frequently used



The Representer Theorem
We can kernelize many other loss functions as well

The Representer Theorem states that if we have a loss function  with

 an arbitrary loss function using some function  of the inputs 

 a (non-decreasing) regularization score (e.g. L1 or L2) and constant 

Then the weights  can be described as a linear combination of the training samples:

Note that this is exactly what we found for SVMs: 

Hence, we can also kernelize Ridge regression, Logistic regression, Perceptrons, Support Vector

Regression, ...

L
′

L f x

R λ

L
′(w) = L(y, f(x)) + λR(||w||)

w

w =
n

∑
i=1

aiyif(xi)

w = ∑
l
i=1 aiyixi



Kernelized Ridge regression
The linear Ridge regression loss (with ):

Filling in  yields the dual formulation:

Generalize  to 

x0 = 1

LRidge(w) =
n

∑
i=0

(yi − wxi)
2 + λ∥w∥2

w = ∑
n
i=1 αiyixi

LRidge(w) =
n

∑
i=1

(yi −
n

∑
j=1

αjyjxixj)2 + λ

n

∑
i=1

n

∑
j=1

αiαjyiyjxixj

xi ⋅ xj k(xi, xj)

LKernelRidge(α, k) =
n

∑
i=1

(yi −
n

∑
j=1

αjyjk(xi, xn))2 + λ

n

∑
i=1

n

∑
j=1

αiαjyiyjk(xi, xj)



Example of kernelized Ridge
Prediction (red) is now a linear combination of kernels (blue): 

We learn a dual coefficient for each point

y = ∑
n
j=1 αjyjk(x, xj)



Fitting our regression data with KernelRidge



Other kernelized methods
Same procedure can be done for logistic regression

For perceptrons,  after every misclassification

Support Vector Regression behaves similarly to Kernel Ridge

α → α + 1

LDualPerceptron(xi, k) = max(0, yi
n

∑
j=1

αjyjk(xj, xi))



Summary
Feature maps  transform features to create a higher-dimensional space

Allows learning non-linear functions or boundaries, but very expensive/slow

For some , we can compute dot products without constructing this space

Kernel trick: 

Kernel  (generalized dot product) is a measure of similarity between  and 

There are many such kernels

Polynomial kernel: 

RBF (Gaussian) kernel: 

A kernel matrix can be precomputed using any similarity measure (e.g. for text, graphs,...)

Any loss function where inputs appear only as dot products can be kernelized

E.g. Linear SVMs: simply replace the dot product with a kernel of choice

The Representer theorem states which other loss functions can also be kernelized and how

Ridge regression, Logistic regression, Perceptrons,...

Φ(x)

Φ(x)
k(xi, xj) = Φ(xi) ⋅ Φ(xj)

k xi xj

kpoly(x1, x2) = (γ(x1 ⋅ x2) + c0)d

kRBF (x1, x2) = exp(−γ||x1 − x2||2)


