Lecture 2: Linear models

Basics of modeling, optimization, and regularization
Joaquin Vanschoren



Notation and Definitions

e A scalaris a simple numeric value, denoted by an italic letter: x = 3.24
e Avectoris a 1D ordered array of n scalars, denoted by a bold letter: x = [3.24,1.2]
= 1, denotes the ¢th element of a vector, thus (o = 3.24.
o Note: some other courses use () notation

e A setis an unordered collection of unique elements, denote by caligraphic capital:
S = {3.24, 1.2}

3.24 1.2
2.24 0.2

e A matrix is a 2D array of scalars, denoted by bold capital: X = [

= X; denotes the 7th row of the matrix
= X. j denotes the jth column
= X; ;j denotes the element in the ith row, jth column, thus X1 o = 2.24



e X"*? ann x P matrix, can represent 1 data points in a p-dimensional space
= Every row is a vector that can represent a point in an n-dimensional space, given a
basis.
m The standard basis for a Euclidean space is the set of unit vectors

7324 1.2
e Eg.ifX = {224 0.2

| 3.0 0.6
0.6 = .2
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e A tensoris an k-dimensional array of data, denoted by an italic capital: T
m kis also called the order, degree, or rank
= T, denotes the element or sub-tensor in the corresponding position
m A set of colorimages can be represented by:
o a 4D tensor (sample x height x width x color channel)
o a 2D tensor (sample x flattened vector of pixel values)

L
pa
£
pa
Color channels [
£
-
Height <
Samples
L )/
N J
Y
Width




Basic operations

e Sums and products are denoted by capital Sigma and capital Pi:

p p
=Ty + T1+...+Tp =Ty Ty T
i=0 i=0

e Operations on vectors are element-wise: €.9. x +z = [zg + 20,1 + 21, ..., Tp + 2

e Dot pI‘OdUthx:w-x:wa:Zfzowi-:ci:wo-wo+w1-:c1+...+wp-xp

Wp - X
e Matrix product wx = [ ]

Wp X
e A function f(z) = y relates an input element = to an output y
m |t has alocal minimum at z = cif f(z) > f(c) ininterval (c — e,c +¢)
m |t has a global minimum at z = ¢ if f(z) > f(c) for any value for z
e A vector function consumes an input and produces a vector: f(x) =y

* max f(z) returns the highest value f(x) for any x
A

e argmax f(z) returns the element x that maximizes f(x)
rzeX



Gradients

A derivative f' of a function f describes how fast f grows or decreases

The process of finding a derivative is called differentiation
m Derivatives for basic functions are known

= For non-basic functions we use the chain rule: F(z) = f(g(z)) — F'(z) = f'(g9(z))g'(z)

A function is differentiable if it has a derivate in any point of it's domain
m |t's continuously differentiable if f' is itself a function
m |t'ssmoothif £/, ", ", ... all exist

A gradient v £ is the derivate of a function in multiple dimensions
of of }

Bry? Bz1 """

= |tis a vector of partial derivatives: Vf = [

m Eg. f=2x+ 333% —sin(x2) — Vf = [2,6x1, —cos(x2)]



Example: f = —(z} + «7)
n sz [ﬁ ﬁ] = [—2m0,—2w1]

Oz, ’ 0z
m Evaluated at point (-4,1): Vf(—4,1) = [8, —2]
o These are the slopes at point (-4,1) in the direction of z, and =z, respectively

‘ (iO,il) = ('4:1)
smms f(XOril)
weee flig, X1)

of v+ . .
— m(lo, I )Xo + flig, i1)

of /- . . .
— M(Io, I1)X1 +f(l0,l1)




Distributions and Probabilities

e The normal (Gaussian) distribution with mean » and standard deviation ¢ is noted as N(y, o)
e Arandom variable X can be continuous or discrete
e A probability distribution fx of a continuous variable X: probability density function (pdf)
= The expectation is given by E[X] = [z fx(z)dz
o A probability distribution of a discrete variable: probability mass function (pmf)

= The expectation (or mean) ux = E[X] = 3%, [x; - Pr(X = ;)]
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L inear models

Linear models make a prediction using a linear function of the input features X

p
fw(x) = Zwi " Ti + wo
=1

Learn w from X, given a loss function £:
argmin £(fu (X))
e Many algorithms with different £: Least squares, Ridge, Lasso, Logistic Regression, Linear
SVMs, ...
e Can be very powerful (and fast), especially for large datasets with many features.
e Can be generalized to learn non-linear patterns: Generalized Linear Models
m Features can be augmentented with polynomials of the original features
m Features can be transformed according to a distribution (Poisson, Tweedie,

Gamma,...)
= Some linear models (e.g. SVMs) can be kernelized to learn non-linear functions



Linear models for regression

e Prediction formula for input features x:
= w; ... w, Usually called weights or coefficients , w, the bias or intercept
= Assumes that errors are N (0, o)

»
U= WX+ wy = E w; Ty + Wy = wy - Ty + Wy Tot. .. W, - Ty + Wo
i=1

w_1: 0.393906 w_0: -0.031804
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Linear Regression (aka Ordinary Least Squares)

e Loss function is the sum of squared errors (SSE) (or residuals) between predictions g, (red)
and the true regression targets y; (blue) on the training set.
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SOLVING ORDINARY LEAST SQUARES

e Convex optimization problem with unique closed-form solution:
w* = (XTX)1XTy
= Add a column of 1's to the front of X to get w,
= Slow. Time complexity is quadratic in number of features: O(p*n)
o X has n rows, p features, hence X7X has dimensionality p - p

m Only worksifn > p
e Gradient Descent

m Faster for large and/or high-dimensional datasets

» When X7 X cannot be computed or takes too long (p or » is too large)
e Very easily overfits.

m coefficients w become very large (steep incline/decline)

= small change in the input x results in a very different output y

= No hyperparameters that control model complexity



(GRADIENT DESCENT

Start with an initial, random set of weights: w°

Given a differentiable loss function £ (e.g. £s55), compute V£

For least squares: 2222 (w) = —2 7 (yn — §1,) s

m |f feature X, is associated with big errors, the gradient wrt w; will be large

Update all weights slightly (by step size or learning rate n) in 'downhill' direction.

Basic update rule (step s):
wi = w® — nV.L(W*)

A
Loss

Y




e Important hyperparameters

= |earning rate

o Too small: slow convergence. Too large: possible divergence
» Maximum number of iterations

o Too small: no convergence. Too large: wastes resources
m | earning rate decay with decay rate k&

o E.g.exponential (n°*! = n’e~*), inverse-time (n**! = 1:Zk)

= Many more advanced ways to control learning rate (see later)

o Adaptive techniques: depend on how much loss improved in previous step
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In two dimensions:

e You can get stuck in local minima (if the loss is not fully convex)
= |f you have many model parameters, this is less likely
= You always find a way down in some direction
m Models with many parameters typically find good local minima



¢ Intuition: walking downhill using only the slope you "feel" nearby

(Image by A. Karpathy)



StocHASTIC GRADIENT DESCENT (SGD)

o Compute gradients not on the entire dataset, but on a single data point i at a time
= Gradient descent: w*™ = w* —pVL(W®) = w® — 2 37 | VL;(W?)
= Stochastic Gradient Descent: w*t! = w* — nV.L;(w?)
e Many smoother variants, e.g.
= Minibatch SGD: compute gradient on batches of data: w*t! = w* — L 7 V£;(w)
= Stochastic Average Gradient Descent (SAG, SAGA). With i, € [1,n] randomly
chosen per iteration:

. . VL, (w¥) i1=1
o Incremental gradient: w**! = w* — 23" ¥ with v¥ = {vs_f( ) ’

; otherwise

Gradient Descent



https://link.springer.com/content/pdf/10.1007/s10107-016-1030-6.pdf
https://proceedings.neurips.cc/paper/2014/file/ede7e2b6d13a41ddf9f4bdef84fdc737-Paper.pdf

IN PRACTICE

e |inear regression can be foundin sklearn.linear model.We'll evaluate it on the
Boston Housing dataset.
» LinearRegression uses closed form solution, SGDRegressor with
loss="'squared loss' uses Stochastic Gradient Descent
m | arge coefficients signal overfitting

m Test score is much lower than training score

from sklearn.linear model import LinearRegression
lr = LinearRegression().fit(X train, y train)

Weights (coefficients): [ -412.711 -52.243 -131.899 -12.004 -15.511 28.716 54.704
-49.535 26.582 37.062 -11.828 -18.058 -19.525 12.203
2980.781 1500.843 114.187 -16.97 40.961 -24.264 57.616
1278.121 -2239.869 222.825 -2.182 42.996 -13.398 -19.389
-2.575 -81.013 9.66 4.914 -0.812 -7.647 33.784
-11.446 68.508 -17.375 42.813 1.14 ]

Bias (intercept): 30.93456367364078

Training set score (R"2): 0.95
Test set score (R"2): 0.61



Ridge regression

e Adds a penalty term to the least squares loss function:

N p

LRidge = Z(yn — (wx, + wo))2 + o Z w%

n=1 i=1

Model is penalized if it uses large coefficients (w)
m Each feature should have as little effect on the outcome as possible

= We don't want to penalize w,, SO we leave it out

Regularization: explicitly restrict a model to avoid overfitting.

= Called L2 regularization because it uses the L2 norm: 3" w?

The strength of the regularization can be controlled with the o hyperparameter.
m |ncreasing o causes more regularization (or shrinkage). Default is 1.0.

Still convex. Can be optimized in different ways:
m Closed form solution (a.k.a. Cholesky): w* = (XTX + ol) ' XTY
m Gradient descent and variants, e.g. Stochastic Average Gradient (SAG,SAGA)
o Conjugate gradient (CG): each new gradient is influenced by previous ones
m Use Cholesky for smaller datasets, Gradient descent for larger ones



IN PRACTICE

from sklearn.linear model import Ridge
lr = Ridge().fit(X train, y train)

Weights (coefficients): [-1.414 -1.557 -1.465 -0.127 -0.079 8.332 0.255 -4.941 3.899 -1.059
-1.584 1.051 -4.012 0.334 0.004 -0.849 0.745 -1.431 -1.63 -1.405
-0.045 -1.746 -1.467 -1.332 -1.692 -0.506 2.622 -2.092 0.195 -0.275
5.113 -1.671 -0.098 0.634 -0.61 0.04 -1.277 -2.913 3.395 0.792]
Bias (intercept): 21.39052595861006
Training set score: 0.89
Test set score: 0.75

Test set score is higher and training set score lower: less overfitting!



e We can plot the weight values for differents levels of regularization to explore the effect of «.

¢ Increasing regularization decreases the values of the coefficients, but never to O.

alpha 0.1, score 0.77 (training score 0.93)
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e When we plot the train and test scores for every o value, we see a sweet spot around o = 0.2
= Models with smaller « are overfitting
= Models with larger « are underfitting
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Other ways to reduce overfitting

e Add more training data: with enough training data, regularization becomes less important
m Ridge and ordinary least squares will have the same performance
o Use fewer features: remove unimportant ones or find a low-dimensional embedding (e.g.
PCA)
m Fewer coefficients to learn, reduces the flexibility of the model
e Scaling the data typically helps (and changes the optimal « value)
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Lasso (Least Absolute Shrinkage and Selection Operator)

e Adds a different penalty term to the least squares sum:

N p

Lrasso = Z(yn - (Wxn + 'WO))2 + a Z ‘wil

n=1 =1

Called L1 regularization because it uses the L1 norm
= Will cause many weights to be exactly O

Same parameter o to control the strength of regularization.
= Will again have a 'sweet spot' depending on the data

No closed-form solution

Convex, but no longer strictly convex, and not differentiable
m Weights can be optimized using coordinate descent



Analyze what happens to the weights:
e |1 prefers coefficients to be exactly zero (sparse models)

e Some features are ignored entirely: automatic feature selection

e How can we explain this?
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COORDINATE DESCENT

o Alternative for gradient descent, supports non-differentiable convex loss functions (e.g.
LLasso)
¢ In every iteration, optimize a single coordinate w; (find minimum in direction of z;)
= Continue with another coordinate, using a selection rule (e.g. round robin)
o Faster iterations. No need to choose a step size (learning rate).
e May converge more slowly. Can't be parallellized.




COORDINATE DESCENT WITH LASSO

Remember that Lruss0 = Lssg +a Y| |wi]

FOI‘ one wl ELasso(wi) = ﬁSSE(w,-) -+ a|wz\

The L1 term is not differentiable but convex: we can compute the subgradient

» Unique at points where . is differentiable, a range of all possible slopes [a,b] where

it is not
—1 w; <0
= For |w;|, the subgradient 8, |w;| = { [-1,1] w; =0
1 w; >0

m Subdifferential 6(f + g) = 8f + d¢g if f and g are both convex

To find the optimum for Lasso w}, solve

awi‘C'Lasso(’wi) = aleSSE(wz) + 8wia|wi‘
0= (w; — p;) + - Oy, |wy
w; = p; — & - Oy, |w

= |[n which p; is the solution for Lssg(w;)


https://towardsdatascience.com/unboxing-lasso-regularization-with-proximal-gradient-method-ista-iterative-soft-thresholding-b0797f05f8ea

e We found: w; = p; — o - O, | Wi
e Lasso solution has the form of a soft thresholding function S

pi +o, pi<-—o
wf = S(p;,a) =< 0, —a < p; < o
pi— 0o, p;>a

= Small weights become O: sparseness!
= |f the data is not normalized, w = Z%S(pi, a) With z; a normalizing constant

Pi

e Ridge solution: w; = p; — & - du,w? = p; — 2a - w;, thus w} = £

S | p— Ordinary Least Squares (SSE) /
-=-=- Ridge with alpha=1 =

----- Lasso with alpha=1 .__:_,..-'-'-'—-
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Interpreting L1 and L2 loss

e L1and L2 in function of the weights

7 W)= [ W
3.5 1 i
3.0 4

£1w) = ) wil
2.5 4 i
2.0 4

Lo(w) = 2 Lyy,1=0
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1.0
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Least Squares Loss + L1or L2
e |Lasso is not differentiable at point O

e For any minimum of least squares, L2 will be smaller, and L1 is more likely be O
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e In 2D (for 2 model weights w; and w»)
m The least squared loss is a 2D convex function in this space
m Forillustration, assume that L1 loss = L2 loss =1
o L1loss (Z|w;]): every {w:,w,} falls on the diamond
o L2 loss (Zw?): every {w:,ws} falls on the circle
m For L1, the loss is minimized if w, or w, is O (rarely so for L2)




Elastic-Net

e Adds both L1 and L2 regularization:

N

p
‘CElastic = Z(yn - (WXn + w(]) + Oépz |w | + Oé 1 p ZU)
=0 =0

n=1

e pisthe L1ratio
= With p = 1, Lgiastic = LiLasso
m With p =0, Lgiastic = LRidge
m (0 < p < 1sets atrade-off between L1 and L2.
o Allows learning sparse models (like Lasso) while maintaining L2 regularization benefits
m E.g.if 2 features are correlated, Lasso likely picks one randomly, Elastic-Net keeps
both

e Weights can be optimized using coordinate descent (similar to Lasso)



Other loss functions for regression

e Huber loss: switches from squared loss to linear loss past a value
= More robust against outliers
e Epsilon insensitive: ignores errors smaller than ¢, and linear past that
= Aims to fit function so that residuals are at most ¢
= Also known as Support Vector Regression ( SVR in sklearn)
e Squared Epsilon insensitive: ignores errors smaller than ¢, and squared past that
e These can all be solved with stochastic gradient descent

m SGDRegressor insklearn

4 —square
—eg—insensitive
—Huber

y—f(x)




Linear models for Classification

Aims to find a hyperplane that separates the examples of each class.
For binary classification (2 classes), we aim to fit the following function:
U =wy *xTy + Wy * Tat...+wy*xp, +wy >0

When ¢ < 0, predict class -1, otherwise predict class +1

Feature 2

0 —
® C(Class-1 @ L od ¢
A Class1

Feature 1




e There are many algorithms for linear classification, differing in loss function, regularization
techniques, and optimization method
e Most common techniques:

m Convert target classes {neg,pos} to {0,1} and treat as a regression task
o Logistic regression (Log loss)
o Ridge Classification (Least Squares + L2 loss)
» Find hyperplane that maximizes the margin between classes
o Linear Support Vector Machines (Hinge loss)
= Neural networks without activation functions
o Perceptron (Perceptron loss)
m SGDClassifier: can act like any of these by choosing loss function
o Hinge, Log, Modified_huber, Squared_hinge, Perceptron



Logistic regression

Aims to predict the probability that a point belongs to the positive class

Converts target values {negative (blue), positive (red)} to {0,1}

Fits a logistic (or sigmoid or S curve) function through these points
= Maps (-Inf,Inf) to a probability [0,1]

1
j = logistic(fy(x)) = ———
g = logistic(fy(x)) >
e E.0.in1D: logistic(ziw; + wg) = m
10 -~ .- ssn @
08 - e logistic(x*w1+wO0)
06 - e Decision boundary
> : — y=x*w1l+wO0

el —— Positive class

o2 4 ] e Negative class

0.0 -

Feature2




¢ Fitted solution to our 2D example:
= To get a binary prediction, choose a probability threshold (e.g. 0.5)




|.oss FUNCTION: CROSS-ENTROPY

e Models that return class probabilities can use cross-entropy loss

N N C
['log(w) = Z H(pp,qn) = — Z an,clog(Qn,C)
n=1

n=1 c=1

Also known as log loss, logistic loss, or maximum likelihood

Based on true probabilities p (O or 1) and predicted probabilities ¢ over N instances
and C classes

o Binary case (C=2): Li,y(w) = — Y, [ynlog(i,) + (1 — ya)log(1 — 3,,)]
Penalty (or surprise) grows exponentially as difference between p and g increases
Often used together with L2 (or L1) loss: £,/ (w) = Lipg(w) + @ >, w?

4 - — true label = 1
— true label = 0

0.0 0.2 0.4 0.6 0.8 10

Predicted probability y




OPTIMIZATION METHODS (SOLVERS) FOR CROSS-ENTROPY LOSS

e Gradient descent (only supports L2 regularization)
m | og loss is differentiable, so we can use (stochastic) gradient descent
= Variants thereof, e.g. Stochastic Average Gradient (SAG, SAGA)
Coordinate descent (supports both L1 and L2 regularization)

m Faster iteration, but may converge more slowly, has issues with saddlepoints
m Called 1iblinear in sklearn. Can't runin parallel.

Newton-Rhapson or Newton Conjugate Gradient (only L2):

= Uses the Hessian H = [ .22 ]: w*'l = w* — nH " (w*)VL(w")

m Slow for large datasets. Works well if solution space is (near) convex

Quasi-Newton methods (only L2)
= Approximate, faster to compute
= E.g. Limited-memory Broyden-Fletcher-Goldfarb—Shanno ( 1bfgs)
o Default in sklearn for Logistic Regression

Some hints on choosing solvers

m Data scaling helps convergence, minimizes differences between solvers


https://towardsdatascience.com/dont-sweat-the-solver-stuff-aea7cddc3451

IN PRACTICE

e | ogistic regression can also be found in sklearn.linear model.
m C hyperparameter is the inverse regularization strength: ¢ = ™!
= penalty:type of regularization: L1, L2 (default), Elastic-Net, or None
m solver:newton-cg, Ibfgs (default), liblinear, sag, saga

¢ Increasing C: less regularization, tries to overfit individual points

from sklearn.linear model import LogisticRegression
lr = LogisticRegression(C=1).fit(X train, y train)

C =10000.000, wl1=9.324, w2=10.729

A
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e Analyze behavior on the breast cancer dataset
m Underfitting if C is too small, some overfitting if C is too large

m \We use cross-validation because the dataset is small
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e Again, choose between L1 or L2 regularization (or elastic-net)

e Small C overfits, L1 leads to sparse models

C: 0.001, penalty: 12, score 0.94 (training score 0.92)
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Ridge Classification

¢ Instead of log loss, we can also use ridge loss:

N p
['Ridge = Z(yn - (WXn + ’LU(]))2 + wa
n=1 i=0

¢ In this case, target values {negative, positive} are converted to {-1,1}
e Can be solved similarly to Ridge regression:
m Closed form solution (a.k.a. Cholesky)
» Gradient descent and variants
o E.g. Conjugate Gradient (CG) or Stochastic Average Gradient (SAG,SAGA)
m Use Cholesky for smaller datasets, Gradient descent for larger ones



Support vector machines

e Decision boundaries close to training points may generalize badly
= Very similar (nearby) test point are classified as the other class

Choose a boundary that is as far away from training points as possible

The support vectors are the training samples closest to the hyperplane

The margin is the distance between the separating hyperplane and the support vectors

Hence, our objective is to maximize the margin

Margin
Support vectors
X2 4 I X,
v
N \\ ! Decision boundary
R S wix =0 A
Y | \ + +
o l \ + .
© 6\:\ 5 + “negative” + “positive”
° 0 o XY hyperplane hyperplane
L A > wix=-1 > wix=1
X
Which hyperplane? SVM: !
e nyperplane: Maximize the margin




SowviNg SVMs wWiTH LAGRANGE MULTIPLIERS

e Imagine a hyperplane (green) y = Y- w; x x; + wo that has slope w, value '+1' for the positive
(red) support vectors, and '-1' for the negative (blue) ones

= Margin between the boundary and support vectors is <, with |jw|| = 37w}

[Iwll *

= \We want to find the weights that maximize —. We can also do that by maximizing

[[wl]
1

2
[|wll




Geometric interpretation

e We want to maximize f = — (blue contours)

2
w|

e The hyperplane (red) must be > 1 for all positive examples:

g(w) =wx; +wo >1 Vi,y(i) =1
¢ Find the weights w that satify ¢ but maximize f

fwl,w2)




Solution

e A quadratic loss function with linear constraints can be solved with Lagrangian multipliers
e This works by assigning a weight a; (called a dual coefficient) to every data point z;

= They reflect how much individual points influence the weights w

= The points with non-zero q«; are the support vectors
o Next, solve the following Primal objective:

m y;, = +1is the correct class for example z;

1 n
L primal = §Hw||2 — ; a;yi(Wxi +wo) + Zai
so that

n
W = E a;Y; X4
i=1

!
a; >0 and Zaiyi =0
=1



¢ |t has a Dual formulation as well (See 'Elements of Statistical Learning' for the derivation):

! !
1
L pua = E a — 5 E a;0;Y;Y;(%;X;)
im1 ig—1

so that

1
a; >0 and Zaiyi =0

i=1

e Computes the dual coefficients directly. A number [ of these are non-zero (sparseness).
= Dot product x;x; can be interpreted as the closeness between points x; and x;
" Lpua inCreases if nearby support vectors x; with high weights a; have different class
Yi
" £p.a also increases with the number of support vectors I and their weights a;

e Can be solved with quadratic programming, e.g. Sequential Minimal Optimization (SMO)



Example result. The circled samples are support vectors, together with their coefficients.




IVIAKING PREDICTIONS

e 4; Will be O if the training point lies on the right side of the decision boundary and outside
the margin
e The training samples for which q; is not O are the support vectors

* Hence, the SVM model is completely defined by the support vectors and their dual
coefficients (weights)

e Knowing the dual coefficients a;, we can find the weights w for the maximal margin
separating hyperplane:

l
W — E a;Y;Xj
=1

e Hence, we can classify a new sample u by looking at the sign of wu + wy



SVMs and kNN

e Remember, we will classify a new point u by looking at the sign of:
l
f(z) =wu+wy = Z a;y; Xiu + wy
=1
o Weighted k-nearest neighbor is a generalization of the k-nearest neighbor classifier. It
classifies points by evaluating:

k
f(z) = Z a;y;dist(z;,u) !
i=1

e Hence: SVM's predict much the same way as k-NN, only:
= They only consider the truly important points (the support vectors): much faster
o The number of neighbors is the number of support vectors
= The distance function is an inner product of the inputs



REGULARIZED (SOFT MARGIN) SVMs

If the data is not linearly separable, (hard) margin maximization becomes meaningless

Relax the contraint by allowing an error ¢;: y;(wx; + wy) > 1 — &

Or (since ¢ > 0):
& = maz(0,1 —y; - (Wx; + wp))

The sum over all points is called hinge loss: Y7 ¢,

Attenuating the error component with a hyperparameter ¢, we get the objective

L(w) =[lwll’ +C > &

Can still be solved with quadratic programming

w
1

— true label = 1 /
2 o —— true label = 0

Hinge loss
1 1

-20 -15 -10 -05 0.0 0.5 1.0 15 2.0

Prediction value y




LEAST SQuARES SVMs

e We can also use the squares of all the errors, or squared hinge loss: 37 ¢
e This yields the Least Squares SVM objective

L(w) = |lwll’ +C )¢

e Can be solved with Lagrangian Multipliers and a set of linear equations
m Still yields support vectors and still allows kernelization
m Support vectors are not sparse, but pruning techniques exist

— true label = 1
— true label = 0

o N & (@] [o4]
1

Squared hinge loss

-20 -15 -10 -05 0.0 0.5 10 15 2.0

Prediction value y




EFFECT OF REGULARIZATION ON MARGIN AND SUPPORT VECTORS

e SVM's Hinge loss acts like L1 regularization, yields sparse models

e Cistheinverse regularization strength (inverse of o in Lasso)
m | arger C: fewer support vectors, smaller margin, more overfitting
= Smaller C: more support vectors, wider margin, less overfitting

e Needs to be tuned carefully to the data




Same for non-linearly separable data
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Large C values can lead to overfitting (e.g. fitting noise), small values can lead to underfitting
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SVMS IN SCIKIT-LEARN

e svm.LinearSVC :faster for large datasets
m Allows choosing between the primal or dual. Primal recommended when n >> p
m Returns coef (w)and intercept (wo)
e svm.SVC with kernel=1inear : allows kernelization (see later)
= Alsoreturns support vectors (the support vectors) and the dual coef aq;
m Scales at least quadratically with the number of samples »
e svm.LinearSVR and svm.SVR are variants for regression

clf = svm.SVC(kernel="'linear')

clf.fit (X, Y)

print("Support vectors:", clf.support vectors [:])
print("Coefficients:", clf.dual coef [:])

Support vectors:
[[-1.021 0.241]

[-0.467 -0.531]

[ 0.951 0.58 ]]
Coefficients:

[[-0.048 -0.569 0.617]]



SoLvING SVMs witH GRADIENT DESCENT

e Soft-margin SVMs can, alternatively, be solved using gradient decent
m Good for large datasets, but does not yield support vectors or kernelization
e Squared Hinge is differentiable

e Hinge is not differentiable but convex, and has a subgradient:

Ltinge(W) = max (0,1 — y;(wWx; + wy))

a‘C’Hinge ) Yz yi(wxi + wO) <1
Ow; 0 otherwise

e Can be solved with (stochastic) gradient descent

3 —
— true label = 1 /
2 o —— true label = 0

Hinge loss
1 1
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GENERALIZED SVMs

e Because the derivative of hinge loss is undefined at y=1, smoothed versions are often used:
m Squared hinge loss: yields least squares SVM
o Equivalent to Ridge classification (with different solver)
= Modified Huber loss: squared hinge, but linear after -1. Robust against outliers
e Log loss can also be used (equivalent to logistic regression)

e Insklearn, SGDClassifier can be used with any of these. Good for large datasets.

— Zero-one loss

Hinge loss
= 5 A Perceptron loss
é. p —— Log loss
7 ——— Squared hinge loss
> 3 4 Modified Huber loss
9
S 2 1

Decision function f(x)




Perceptron

e Represents a single neuron (node) with inputs z;, a bias w,, and output y

e Each connection has a (synaptic) weight w;. The node outputs § = >~ z,w; + wy

e The activation function predicts 1if xw + wy > 0, -1 otherwise

e Weights can be learned with (stochastic) gradient descent and Hinge(0) loss
m Updated only on misclassification, corrects output by +1

EPerceptron = maw(oa —Yi (Wxi + ’w()))

aE’Perceptron ) vy v (WXi + ’UJ()) <0
ow; 0 otherwise

_~~ function

@ Activation
Fundamental unit of a Neural Network P

U it Y wx >0
output = i=0

-1 otherwise




Linear Models for multiclass classification

one-vs-rest (aka one-vs-all)

e | earn a binary model for each class vs. all other classes

e Create as many binary models as there are classes

15

10
® ClassO
A Class1
Class 2

—— Line class 0

~== Lineclass 1

Line class 2

Feature 1

-10

Feature 0




e Every binary classifiers makes a prediction, the one with the highest score (>0) wins

Class 0
Class 1
Class 2
Line class 0
Line class 1
Line class 2

Feature 1

Feature 0




one-vs-one

e An alternative is to learn a binary model for every combination of two classes

C(C-1)
2

m For C classes, this results in binary models

m Each point is classified according to a majority vote amongst all models
m Can also be a 'soft vote': sum up the probabilities (or decision values) for all
models. The class with the highest sum wins.
e Requires more models than one-vs-rest, but training each one is faster
= Only the examples of 2 classes are included in the training data
e Recommended for algorithms than learn well on small datasets

m Especially SVMs and Gaussian Processes



Linear models overview

Name

Representation

Loss function

Optimization

Regularization

east squares Llnea.r SSE CFS or SGD None
function (R)
Linear L2
Ridge function (R) SSE + L2 CFS or SGD Zt)rength (
Linear L]
Lasso ) SSE + L1 Coordinate descent strength (
function (R) Q)
. Linear . «, L1 ratio
Elastic-Net : SSE+ L1+ L2 Coordinate descent
function (R) (p)
Linear SSE, Huber, e-ins,... +
SGDRegressor function (R)  L1/L2 SGD L1/L2, o
Logistic Linear SGD, coordinate
regression function (C) =g < Ll descent,... Sl @
Ridge Linear L2
g°e : SSE + L2 CFS or SGD strength (
classification function (C) Q)
. Support . Quadratic
SITEEr St Vectors riRERL, programming or SGD SeR(C)




Name Representation Loss function Optimization Regularization

Least Squares  Support Linear equations or

SVM Vectors Squared Hinge SGD Cost (C)
Linear :

Perceptron e (0] Hinge(0) SGD None

SGDClassifier N2 Log, (59.) Hinge, SGD L1/L2, a

function (C) Mod. Huber,...
SSE: Sum of Squared Errors

CFS: Closed-form solution

SGD: (Stochastic) Gradient Descent and variants

(R)egression, (C)lassification



Summary

e Linear models
m Good for very large datasets (scalable)
= Good for very high-dimensional data (not for low-dimensional data)

Can be used to fit non-linear or low-dim patterns as well (see later)
m Preprocessing: e.g. Polynomial or Poisson transformations
m Generalized linear models (kernelization)

Regularization is important. Tune the regularization strength («)
= Ridge (L2): Good fit, sometimes sensitive to outliers
m | asso (L1): Sparse models: fewer features, more interpretable, faster

m Elastic-Net: Trade-off between both, e.g. for correlated features

Most can be solved by different optimizers (solvers)
m Closed form solutions or quadratic/linear solvers for smaller datasets
m Gradient descent variants (SGD,CD,SAG,CG,...) for larger ones
Multi-class classification can be done using a one-vs-all approach



