
Lecture 1: Introduction
A few useful things to know about machine learning

Joaquin Vanschoren

Why Machine Learning?
Search engines (e.g. Google)

Recommender systems (e.g. Netflix)

Automatic translation (e.g. Google Translate)

Speech understanding (e.g. Siri, Alexa)

Game playing (e.g. AlphaGo)

Self-driving cars

Personalized medicine

Progress in all sciences: Genetics, astronomy, chemistry, neurology, physics,...

What is Machine Learning?
Learn to perform a task, based on experience (examples) , minimizing error

E.g. recognizing a person in an image as accurately as possible

Often, we want to learn a function (model) with some model parameters that produces the right

output

Usually part of a much larger system that provides the data in the right form

Data needs to be collected, cleaned, normalized, checked for data biases,...

X E

f θ

y

fθ(X) = y

argmin
θ

E(fθ(X))

X

Inductive bias
In practice, we have to put assumptions into the model: inductive bias

What should the model look like?

Mimick human brain: Neural Networks

Logical combination of inputs: Decision trees, Linear models

Remember similar examples: Nearest Neighbors, SVMs

Probability distribution: Bayesian models

User-defined settings (hyperparameters)

E.g. depth of tree, network architecture

Assuptions about the data distribution, e.g.

We can transfer knowledge from previous tasks:

Choose the right model, hyperparameters

Reuse previously learned values for model parameters

In short:

b

X ∼ N(μ, σ)

f1, f2, f3, . . .⟹ fnew

θ

argmin
θ,b

E(fθ,b(X))

Machine learning vs Statistics
See Breiman (2001): Statistical modelling: The two cultures

Both aim to make predictions of natural phenomena:

Statistics:

Help humans understand the world

Assume data is generated according to an understandable model

Machine learning:

Automate a task entirely (partially replace the human)

Assume that the data generation process is unknown

Engineering-oriented, less (too little?) mathematical theory

Types of machine learning
Supervised Learning: learn a model from labeled data (ground truth)

Given a new input X, predict the right output y

Given examples of stars and galaxies, identify new objects in the sky

Unsupervised Learning: explore the structure of the data (X) to extract meaningful information

Given inputs X, find which ones are special, similar, anomalous, ...

Semi-Supervised Learning: learn a model from (few) labeled and (many) unlabeled examples

Unlabeled examples add information about which new examples are likely to occur

Reinforcement Learning: develop an agent that improves its performance based on interactions

with the environment

Note: Practical ML systems can combine many types in one system.

f (X, y)

Supervised Machine Learning
Learn a model from labeled training data, then make predictions

Supervised: we know the correct/desired outcome (label)

Subtypes: classification (predict a class) and regression (predict a numeric value)

Most supervised algorithms that we will see can do both

Classification

Predict a class label (category), discrete and unordered

Can be binary (e.g. spam/not spam) or multi-class (e.g. letter recognition)

Many classifiers can return a confidence per class

The predictions of the model yield a decision boundary separating the classes

Example: Flower classification

Classify types of Iris flowers (setosa, versicolor, or virginica). How would you do it?

Representation: input features and labels

We could take pictures and use them (pixel values) as inputs (-> Deep Learning)

We can manually define a number of input features (variables), e.g. length and width of leaves

Every `example' is a point in a (possibly high-dimensional) space

Regression

Predict a continuous value, e.g. temperature

Target variable is numeric

Some algorithms can return a confidence interval

Find the relationship between predictors and the target.

Unsupervised Machine Learning
Unlabeled data, or data with unknown structure

Explore the structure of the data to extract information

Many types, we'll just discuss two.

Clustering

Organize information into meaningful subgroups (clusters)

Objects in cluster share certain degree of similarity (and dissimilarity to other clusters)

Example: distinguish different types of customers

Dimensionality reduction

Data can be very high-dimensional and difficult to understand, learn from, store,...

Dimensionality reduction can compress the data into fewer dimensions, while retaining most of the

information

Contrary to feature selection, the new features lose their (original) meaning

The new representation can be a lot easier to model (and visualize)

Reinforcement learning
Develop an agent that improves its performance based on interactions with the environment

Example: games like Chess, Go,...

Search a (large) space of actions and states

Reward function defines how well a (series of) actions works

Learn a series of actions (policy) that maximizes reward through exploration

Learning = Representation + evaluation + optimization
All machine learning algorithms consist of 3 components:

Representation: A model must be represented in a formal language that the computer can

handle

Defines the 'concepts' it can learn, the hypothesis space

E.g. a decision tree, neural network, set of annotated data points

Evaluation: An internal way to choose one hypothesis over the other

Objective function, scoring function, loss function

E.g. Difference between correct output and predictions

Optimization: An efficient way to search the hypothesis space

Start from simple hypothesis, extend (relax) if it doesn't fit the data

Start with initial set of model parameters, gradually refine them

Many methods, differing in speed of learning, number of optima,...

A powerful/flexible model is only useful if it can also be optimized efficiently

fθ

L(fθ)

Neural networks: representation
Let's take neural networks as an example

Representation: (layered) neural network

Each connection has a weight (a.k.a. model parameters)

Each node receives weighted inputs, emits new value

Model returns the output of the last layer

The architecture, number/type of neurons, etc. are fixed

We call these hyperparameters (set by user, fixed during training)

θi

f

Neural networks: evaluation and optimization
Representation: Given the structure, the model is represented by its parameters

Imagine a mini-net with two weights (): a 2-dimensional search space

Evaluation: A loss function computes how good the predictions are

Estimated on a set of training data with the 'correct' predictions

We can't see the full surface, only evaluate specific sets of parameters

Optimization: Find the optimal set of parameters

Usually a type of search in the hypothesis space

E.g. Gradient descent:

θ0, θ1

L(fθ)

θnew
i = θi +

L(fθ)

∂θi

Overfitting and Underfitting
It's easy to build a complex model that is 100% accurate on the training data, but very bad on new

data

Overfitting: building a model that is too complex for the amount of data you have

You model peculiarities in your training data (noise, biases,...)

Solve by making model simpler (regularization), or getting more data

Most algorithms have hyperparameters that allow regularization

Underfitting: building a model that is too simple given the complexity of the data

Use a more complex model

There are techniques for detecting overfitting (e.g. bias-variance analysis). More about that later

You can build ensembles of many models to overcome both underfitting and overfitting

There is often a sweet spot that you need to find by optimizing the choice of algorithms and

hyperparameters, or using more data.

Example: regression using polynomial functions

Model selection
Next to the (internal) loss function, we need an (external) evaluation function

Feedback signal: are we actually learning the right thing?

Are we under/overfitting?

Carefully choose to fit the application.

Needed to select between models (and hyperparameter settings)

© XKCD

Data needs to be split into training and test sets

Optimize model parameters on the training set, evaluate on independent test set

Avoid data leakage:

Never optimize hyperparameter settings on the test data

Never choose preprocessing techniques based on the test data

To optimize hyperparameters and preprocessing as well, set aside part of training set as a validation

set

Keep test set hidden during all training

For a given hyperparameter setting, learn the model parameters on training set

Minize the loss

Evaluate the trained model on the validation set

Tune the hyperparameters to maximize a certain metric (e.g. accuracy)

Only generalization counts!
Never evaluate your final models on the training data, except for:

Tracking whether the optimizer converges (learning curves)

Diagnosing under/overfitting:

Low training and test score: underfitting

High training score, low test score: overfitting

Always keep a completely independent test set

On small datasets, use multiple train-test splits to avoid sampling bias

You could sample an 'easy' test set by accident

E.g. Use cross-validation (see later)

Better data representations, better models
Algorithm needs to correctly transform the inputs to the right outputs

A lot depends on how we present the data to the algorithm

Transform data to better representation (a.k.a. encoding or embedding)

Can be done end-to-end (e.g. deep learning) or by first 'preprocessing' the data (e.g.

feature selection/generation)

Feature engineering
Most machine learning techniques require humans to build a good representation of the data

Especially when data is naturally structured (e.g. table with meaningful columns)

Feature engineering is often still necessary to get the best results

Feature selection, dimensionality reduction, scaling, ...

Applied machine learning is basically feature engineering (Andrew Ng)

Nothing beats domain knowledge (when available) to get a good representation

E.g. Iris data: leaf length/width separate the classes well

Build prototypes early-on

Learning data transformations end-to-end
For unstructured data (e.g. images, text), it's hard to extract good features

Deep learning: learn your own representation (embedding) of the data

Through multiple layers of representation (e.g. layers of neurons)

Each layer transforms the data a bit, based on what reduces the error

Example: digit classification

Input pixels go in, each layer transforms them to an increasingly informative representation for the

given task

Often less intuitive for humans

Curse of dimensionality
Just adding lots of features and letting the model figure it out doesn't work

Our assumptions (inductive biases) often fail in high dimensions:

Randomly sample points in an n-dimensional space (e.g. a unit hypercube)

Almost all points become outliers at the edge of the space

Distances between any two points will become almost identical

Practical consequences

For every dimension (feature) you add, you need exponentially more data to avoid sparseness

Affects any algorithm that is based on distances (e.g. kNN, SVM, kernel-based methods, tree-based

methods,...)

Blessing of non-uniformity: on many applications, the data lives in a very small subspace

You can drastically improve performance by selecting features or using lower-dimensional

data representations

"More data can beat a cleverer algorithm"
(but you need both)

More data reduces the chance of overfitting

Less sparse data reduces the curse of dimensionality

Non-parametric models: number of model parameters grows with amount of data

Tree-based techniques, k-Nearest neighbors, SVM,...

They can learn any model given sufficient data (but can get stuck in local minima)

Parametric (fixed size) models: fixed number of model parameters

Linear models, Neural networks,...

Can be given a huge number of parameters to benefit from more data

Deep learning models can have millions of weights, learn almost any function.

The bottleneck is moving from data to compute/scalability

Building machine learning systems
A typical machine learning system has multiple components, which we will cover in upcoming lectures:

Preprocessing: Raw data is rarely ideal for learning

Feature scaling: bring values in same range

Encoding: make categorical features numeric

Discretization: make numeric features categorical

Label imbalance correction (e.g. downsampling)

Feature selection: remove uninteresting/correlated features

Dimensionality reduction can also make data easier to learn

Using pre-learned embeddings (e.g. word-to-vector, image-to-vector)

Learning and evaluation

Every algorithm has its own biases

No single algorithm is always best

Model selection compares and selects the best models

Different algorithms, different hyperparameter settings

Split data in training, validation, and test sets

Prediction

Final optimized model can be used for prediction

Expected performance is performance measured on independent test set

Together they form a workflow of pipeline

There exist machine learning methods to automatically build and tune these pipelines

You need to optimize pipelines continuously

Concept drift: the phenomenon you are modelling can change over time

Feedback: your model's predictions may change future data

Summary
Learning algorithms contain 3 components:

Representation: a model that maps input data to desired output

Contains model parameters that can be made to fit the data

Loss function : measures how well the model fits the data

Optimization technique to find the optimal :

Select the right model, then fit it to the data to minimize a task-specific error

Inductive bias : assumptions about model and hyperparameters

Overfitting: model fits the training data well but not new (test) data

Split the data into (multiple) train-validation-test splits

Regularization: tune hyperparameters (on validation set) to simplify model

Gather more data, or build ensembles of models

Machine learning pipelines: preprocessing + learning + deployment

f X y

θ X

L(fθ(X))

θ argmin
θ

L(fθ(X))

E

b

argmin
θ,b

E(fθ,b(X))

